BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19937407)

  • 1. Monitoring phase transformations in intact tablets of trehalose by FT-Raman spectroscopy.
    Chakravarty P; Bhardwaj SP; King L; Suryanarayanan R
    AAPS PharmSciTech; 2009; 10(4):1420-6. PubMed ID: 19937407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RH-Temperature Stability Diagram of the Dihydrate, β-Anhydrate, and α-Anhydrate Forms of Crystalline Trehalose.
    Allan M; Chamberlain MC; Mauer LJ
    J Food Sci; 2019 Jun; 84(6):1465-1476. PubMed ID: 31042816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of crystallizing and non-crystallizing cosolutes on trehalose crystallization during freeze-drying.
    Sundaramurthi P; Suryanarayanan R
    Pharm Res; 2010 Nov; 27(11):2384-93. PubMed ID: 20824310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization of trehalose in frozen solutions and its phase behavior during drying.
    Sundaramurthi P; Patapoff TW; Suryanarayanan R
    Pharm Res; 2010 Nov; 27(11):2374-83. PubMed ID: 20811935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of recrystallization of amorphous trehalose through hot-humidity stage X-ray powder diffraction.
    Jójárt-Laczkovich O; Katona G; Aigner Z; Szabó-Révész P
    Eur J Pharm Sci; 2016 Dec; 95():145-151. PubMed ID: 27496047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An anhydrous polymorphic form of trehalose.
    Nagase H; Endo T; Ueda H; Nakagaki M
    Carbohydr Res; 2002 Feb; 337(2):167-73. PubMed ID: 11814449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Distribution of Trehalose Dihydrate Crystallization in Tablets by X-ray Diffractometry.
    Thakral NK; Yamada H; Stephenson GA; Suryanarayanan R
    Mol Pharm; 2015 Oct; 12(10):3766-75. PubMed ID: 26332906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of the crystallization of amorphous trehalose using simultaneous gravimetric vapor sorption/near IR (GVS/NIR) and "modulated" GVS/NIR.
    Moran A; Buckton G
    AAPS PharmSciTech; 2009; 10(1):297-302. PubMed ID: 19296226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure in dehydrated trehalose dihydrate--evaluation of the concept of partial crystallinity.
    Rani M; Govindarajan R; Surana R; Suryanarayanan R
    Pharm Res; 2006 Oct; 23(10):2356-67. PubMed ID: 16927180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle size dependent molecular rearrangements during the dehydration of trehalose dihydrate in situ FT-Raman spectroscopy.
    Taylor LS; Williams AC; York P
    Pharm Res; 1998 Aug; 15(8):1207-14. PubMed ID: 9706051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of crystallinity of trehalose dihydrate microspheres by usage of terahertz time-domain spectroscopy.
    Takeuchi I; Tomoda K; Nakajima T; Terada H; Kuroda H; Makino K
    J Pharm Sci; 2012 Sep; 101(9):3465-72. PubMed ID: 22499332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innovative crystal transformation of dihydrate trehalose to anhydrous trehalose using ethanol.
    Ohashi T; Yoshii H; Furuta T
    Carbohydr Res; 2007 May; 342(6):819-25. PubMed ID: 17286968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro simulation of solid-solid dehydration, rehydration, and solidification of trehalose dihydrate using thermal and vibrational spectroscopic techniques.
    Lin SY; Chien JL
    Pharm Res; 2003 Dec; 20(12):1926-31. PubMed ID: 14725355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations into the stabilisation of drugs by sugar glasses: I. Tablets prepared from stabilised alkaline phosphatase.
    Eriksson HJ; Hinrichs WL; van Veen B; Somsen GW; de Jong GJ; Frijlink HW
    Int J Pharm; 2002 Dec; 249(1-2):59-70. PubMed ID: 12433434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase behavior of amorphous molecular dispersions I: Determination of the degree and mechanism of solid solubility.
    Vasanthavada M; Tong WQ; Joshi Y; Kislalioglu MS
    Pharm Res; 2004 Sep; 21(9):1598-606. PubMed ID: 15497685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Aggregation in Frozen Trehalose Formulations: Effects of Composition, Cooling Rate, and Storage Temperature.
    Connolly BD; Le L; Patapoff TW; Cromwell MEM; Moore JMR; Lam P
    J Pharm Sci; 2015 Dec; 104(12):4170-4184. PubMed ID: 26398200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural evolution of the dihydrate to anhydrate crystalline transition of trehalose as measured by wide-angle X-ray scattering.
    Kilburn D; Sokol PE
    J Phys Chem B; 2009 Feb; 113(7):2201-6. PubMed ID: 19166278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mobility as an effective predictor of the physical stability of amorphous trehalose.
    Bhardwaj SP; Suryanarayanan R
    Mol Pharm; 2012 Nov; 9(11):3209-17. PubMed ID: 23003337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Monitoring of Cocrystal Polymorphisms in Model Tablets Using Transmission Low-Frequency Raman Spectroscopy.
    Inoue M; Osada T; Hisada H; Koide T; Fukami T; Roy A; Carriere J
    J Pharm Sci; 2023 Jan; 112(1):225-229. PubMed ID: 36126759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of a Small Amount of Glycerol on the Trehalose Bioprotective Action Analyzed In Situ During Freeze-Drying of Lyzozyme Formulations by Micro-Raman Spectroscopy.
    Starciuc T; Guinet Y; Paccou L; Hedoux A
    J Pharm Sci; 2017 Oct; 106(10):2988-2997. PubMed ID: 28624416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.