These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 19937844)
1. Probabilistic prediction of the human CYP3A4 and CYP2D6 metabolism sites. Dapkunas J; Sazonovas A; Japertas P Chem Biodivers; 2009 Nov; 6(11):2101-6. PubMed ID: 19937844 [TBL] [Abstract][Full Text] [Related]
2. Structure-based methods for the prediction of the dominant P450 enzyme in human drug biotransformation: consideration of CYP3A4, CYP2C9, CYP2D6. Manga N; Duffy JC; Rowe PH; Cronin MT SAR QSAR Environ Res; 2005; 16(1-2):43-61. PubMed ID: 15844442 [TBL] [Abstract][Full Text] [Related]
3. Predicting drug metabolism by cytochrome P450 2C9: comparison with the 2D6 and 3A4 isoforms. Rydberg P; Olsen L ChemMedChem; 2012 Jul; 7(7):1202-9. PubMed ID: 22593031 [TBL] [Abstract][Full Text] [Related]
4. Construction of Metabolism Prediction Models for CYP450 3A4, 2D6, and 2C9 Based on Microsomal Metabolic Reaction System. He SB; Li MM; Zhang BX; Ye XT; Du RF; Wang Y; Qiao YJ Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27735849 [TBL] [Abstract][Full Text] [Related]
5. Exploration of enzyme-ligand interactions in CYP2D6 & 3A4 homology models and crystal structures using a novel computational approach. Kjellander B; Masimirembwa CM; Zamora I J Chem Inf Model; 2007; 47(3):1234-47. PubMed ID: 17381082 [TBL] [Abstract][Full Text] [Related]
6. In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors. Jensen BF; Vind C; Padkjaer SB; Brockhoff PB; Refsgaard HH J Med Chem; 2007 Feb; 50(3):501-11. PubMed ID: 17266202 [TBL] [Abstract][Full Text] [Related]
7. Exploration of catalytic properties of CYP2D6 and CYP3A4 through metabolic studies of levorphanol and levallorphan. Bonn B; Masimirembwa CM; Castagnoli N Drug Metab Dispos; 2010 Jan; 38(1):187-99. PubMed ID: 19797609 [TBL] [Abstract][Full Text] [Related]
8. Generation and validation of rapid computational filters for cyp2d6 and cyp3a4. Ekins S; Berbaum J; Harrison RK Drug Metab Dispos; 2003 Sep; 31(9):1077-80. PubMed ID: 12920160 [TBL] [Abstract][Full Text] [Related]
9. Using chemical bond-based method to predict site of metabolism for five biotransformations mediated by CYP 3A4, 2D6, and 2C9. Fu X; He S; Du L; Lv Z; Zhang Y; Zhang Q; Wang Y Biochem Pharmacol; 2018 Jun; 152():302-314. PubMed ID: 29588194 [TBL] [Abstract][Full Text] [Related]
10. Prediction of drug metabolism: the case of cytochrome P450 2D6. Vermeulen NP Curr Top Med Chem; 2003; 3(11):1227-39. PubMed ID: 12769702 [TBL] [Abstract][Full Text] [Related]
11. Marsdenia tenacissima extract inhibits gefitinib metabolism in vitro by interfering with human hepatic CYP3A4 and CYP2D6 enzymes. Han SY; Zhao HY; Zhou N; Zhou F; Li PP J Ethnopharmacol; 2014; 151(1):210-7. PubMed ID: 24157377 [TBL] [Abstract][Full Text] [Related]
12. Importance of hydrophobic parameters in identifying appropriate pose of CYP substrates in cytochromes. Ramesh M; Bharatam PV Eur J Med Chem; 2014 Jan; 71():15-23. PubMed ID: 24269512 [TBL] [Abstract][Full Text] [Related]
13. Prediction of in vivo drug-drug interactions from in vitro data : factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Brown HS; Galetin A; Hallifax D; Houston JB Clin Pharmacokinet; 2006; 45(10):1035-50. PubMed ID: 16984215 [TBL] [Abstract][Full Text] [Related]
15. An evaluation of ondansetron binding interactions with human cytochrome P450 enzymes CYP3A4 and CYP2D6. Lewis DF; Ito Y; Eddershaw PJ; Dickins M; Goldfarb PS Drug Metab Lett; 2010 Jan; 4(1):25-30. PubMed ID: 20201779 [TBL] [Abstract][Full Text] [Related]
16. Novel approach to predicting P450-mediated drug metabolism: development of a combined protein and pharmacophore model for CYP2D6. de Groot MJ; Ackland MJ; Horne VA; Alex AA; Jones BC J Med Chem; 1999 May; 42(9):1515-24. PubMed ID: 10229622 [TBL] [Abstract][Full Text] [Related]
17. In Silico Prediction of Cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9. Nembri S; Grisoni F; Consonni V; Todeschini R Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27294921 [TBL] [Abstract][Full Text] [Related]
18. A new standardized electrochemical array for drug metabolic profiling with human cytochromes P450. Fantuzzi A; Mak LH; Capria E; Dodhia V; Panicco P; Collins S; Gilardi G Anal Chem; 2011 May; 83(10):3831-9. PubMed ID: 21469680 [TBL] [Abstract][Full Text] [Related]
19. Metabolism of the active metabolite of quetiapine, N-desalkylquetiapine in vitro. Bakken GV; Molden E; Knutsen K; Lunder N; Hermann M Drug Metab Dispos; 2012 Sep; 40(9):1778-84. PubMed ID: 22688609 [TBL] [Abstract][Full Text] [Related]
20. Trainable structure-activity relationship model for virtual screening of CYP3A4 inhibition. Didziapetris R; Dapkunas J; Sazonovas A; Japertas P J Comput Aided Mol Des; 2010 Nov; 24(11):891-906. PubMed ID: 20814717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]