These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 19937847)

  • 1. An expert system approach to the assessment of hepatotoxic potential.
    Marchant CA; Fisk L; Note RR; Patel ML; Suárez D
    Chem Biodivers; 2009 Nov; 6(11):2107-14. PubMed ID: 19937847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatotoxicity: a scheme for generating chemical categories for read-across, structural alerts and insights into mechanism(s) of action.
    Hewitt M; Enoch SJ; Madden JC; Przybylak KR; Cronin MT
    Crit Rev Toxicol; 2013 Aug; 43(7):537-58. PubMed ID: 23875763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs.
    Chen M; Hong H; Fang H; Kelly R; Zhou G; Borlak J; Tong W
    Toxicol Sci; 2013 Nov; 136(1):242-9. PubMed ID: 23997115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing predictive performance of CASE Ultra expert system models using the applicability domains of individual toxicity alerts.
    Chakravarti SK; Saiakhov RD; Klopman G
    J Chem Inf Model; 2012 Oct; 52(10):2609-18. PubMed ID: 22947043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity.
    Cruz-Monteagudo M; Cordeiro MN; Borges F
    J Comput Chem; 2008 Mar; 29(4):533-49. PubMed ID: 17705164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Silico Models for Hepatotoxicity.
    Ellison C; Hewitt M; Przybylak K
    Methods Mol Biol; 2022; 2425():355-392. PubMed ID: 35188639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of adverse drug reactions using decision tree modeling.
    Hammann F; Gutmann H; Vogt N; Helma C; Drewe J
    Clin Pharmacol Ther; 2010 Jul; 88(1):52-9. PubMed ID: 20220749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying mechanisms of chemical toxicity to predict drug safety.
    Guengerich FP; MacDonald JS
    Chem Res Toxicol; 2007 Mar; 20(3):344-69. PubMed ID: 17302443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing structure-activity relationships for the prediction of hepatotoxicity.
    Greene N; Fisk L; Naven RT; Note RR; Patel ML; Pelletier DJ
    Chem Res Toxicol; 2010 Jul; 23(7):1215-22. PubMed ID: 20553011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
    Sakatis MZ; Reese MJ; Harrell AW; Taylor MA; Baines IA; Chen L; Bloomer JC; Yang EY; Ellens HM; Ambroso JL; Lovatt CA; Ayrton AD; Clarke SE
    Chem Res Toxicol; 2012 Oct; 25(10):2067-82. PubMed ID: 22931300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A compound attributes-based predictive model for drug induced liver injury in humans.
    Liu Y; Gao H; He YD
    PLoS One; 2020; 15(4):e0231252. PubMed ID: 32294131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of organ toxicity endpoints by QSAR modeling based on precise chemical-histopathology annotations.
    Myshkin E; Brennan R; Khasanova T; Sitnik T; Serebriyskaya T; Litvinova E; Guryanov A; Nikolsky Y; Nikolskaya T; Bureeva S
    Chem Biol Drug Des; 2012 Sep; 80(3):406-16. PubMed ID: 22583392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How does the quality of phospholipidosis data influence the predictivity of structural alerts?
    Przybylak KR; Alzahrani AR; Cronin MT
    J Chem Inf Model; 2014 Aug; 54(8):2224-32. PubMed ID: 25062434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing novel computational prediction models for assessing chemical-induced neurotoxicity using naïve Bayes classifier technique.
    Zhang H; Mao J; Qi HZ; Xie HZ; Shen C; Liu CT; Ding L
    Food Chem Toxicol; 2020 Sep; 143():111513. PubMed ID: 32621845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico models for drug-induced liver injury--current status.
    Przybylak KR; Cronin MT
    Expert Opin Drug Metab Toxicol; 2012 Feb; 8(2):201-17. PubMed ID: 22248266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid in silico models for drug-induced liver injury using chemical descriptors and in vitro cell-imaging information.
    Zhu XW; Sedykh A; Liu SS
    J Appl Toxicol; 2014 Mar; 34(3):281-8. PubMed ID: 23640866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward predictive models for drug-induced liver injury in humans: are we there yet?
    Chen M; Bisgin H; Tong L; Hong H; Fang H; Borlak J; Tong W
    Biomark Med; 2014; 8(2):201-13. PubMed ID: 24521015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the structural requirements for mutagencitiy, by incorporating molecular flexibility and metabolic activation of chemicals. II. General Ames mutagenicity model.
    Serafimova R; Todorov M; Pavlov T; Kotov S; Jacob E; Aptula A; Mekenyan O
    Chem Res Toxicol; 2007 Apr; 20(4):662-76. PubMed ID: 17381132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Idiosyncratic drug hepatotoxicity.
    Kaplowitz N
    Nat Rev Drug Discov; 2005 Jun; 4(6):489-99. PubMed ID: 15931258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using 2D Structural Alerts to Define Chemical Categories for Molecular Initiating Events.
    Allen TEH; Goodman JM; Gutsell S; Russell PJ
    Toxicol Sci; 2018 Sep; 165(1):213-223. PubMed ID: 30020496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.