These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19938209)

  • 1. On the organization of receptive fields of orientation-selective units recorded in the fish tectum.
    Damjanović I; Maximova E; Maximov V
    J Integr Neurosci; 2009 Sep; 8(3):323-44. PubMed ID: 19938209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardinal difference between the orientation-selective retinal ganglion cells projecting to the fish tectum and the orientation-selective complex cells of the mammalian striate cortex.
    Damjanović I; Maximova E; Maximov P; Maximov V
    J Integr Neurosci; 2012 Jun; 11(2):169-82. PubMed ID: 22744823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the organization of receptive fields of retinal spot detectors projecting to the fish tectum: Analogies with the local edge detectors in frogs and mammals.
    Maximova EM; Aliper AT; Damjanović I; Zaichikova AA; Maximov PV
    J Comp Neurol; 2020 Jun; 528(8):1423-1435. PubMed ID: 31749169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Putative targets of direction-selective retinal ganglion cells in the tectum opticum of cyprinid fish.
    Damjanović I; Maximov PV; Aliper AT; Zaichikova AA; Gačić Z; Maximova EM
    Brain Res; 2019 Apr; 1708():20-26. PubMed ID: 30527677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptive field sizes of direction-selective units in the fish tectum.
    Damjanović I; Maximova E; Maximov V
    J Integr Neurosci; 2009 Mar; 8(1):77-93. PubMed ID: 19412981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposing motion inhibits responses of direction-selective ganglion cells in the fish retina.
    Damjanović I; Maximova E; Aliper A; Maximov P; Maximov V
    J Integr Neurosci; 2015 Mar; 14(1):53-72. PubMed ID: 25608593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptive field properties of single units in the opossum striate cortex.
    Rocha-Miranda CE; Linden R; Volchan E; Lent R; Bombar-Dieri RA
    Brain Res; 1976 Mar; 104(2):197-219. PubMed ID: 816419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields.
    Schiller PH; Finlay BL; Volman SF
    J Neurophysiol; 1976 Nov; 39(6):1288-319. PubMed ID: 825621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats.
    Berman N; Cynader M
    J Physiol; 1972 Jul; 224(2):363-89. PubMed ID: 5071401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Updated functional segregation of retinal ganglion cell projections in the tectum of a cyprinid fish-further elaboration based on microelectrode recordings.
    Aliper AT; Zaichikova AA; Damjanović I; Maximov PV; Kasparson AA; Gačić Z; Maximova EM
    Fish Physiol Biochem; 2019 Apr; 45(2):773-792. PubMed ID: 30612338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic and postsynaptic single-unit responses in the goldfish tectum as revealed by a reversible synaptic transmission blocker.
    Maximova E; Pushchin I; Maximov P; Maximov V
    J Integr Neurosci; 2012 Jun; 11(2):183-91. PubMed ID: 22744824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys.
    Felleman DJ; Kaas JH
    J Neurophysiol; 1984 Sep; 52(3):488-513. PubMed ID: 6481441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Color properties of the motion detectors projecting to the goldfish tectum: I. A color matching study.
    Maximov V; Maximova E; Damjanović I; Maximov P
    J Integr Neurosci; 2014 Sep; 13(3):465-84. PubMed ID: 25164354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones.
    Bishop PO; Coombs JS; Henry GH
    J Physiol; 1971 Dec; 219(3):625-57. PubMed ID: 5157596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields.
    Caldwell JH; Daw NW; Wyatt HJ
    J Physiol; 1978 Mar; 276():277-98. PubMed ID: 650450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of single units in the monkey superior colliculus to moving stimuli.
    Moors J; Vendrik AJ
    Exp Brain Res; 1979 Apr; 35(2):349-69. PubMed ID: 108124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional organization in the visual cortex of the golden hamster.
    Tiao YC; Blakemore C
    J Comp Neurol; 1976 Aug; 168(4):459-81. PubMed ID: 939818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The accessory optic system of rabbit. II. Spatial organization of direction selectivity.
    Simpson JI; Leonard CS; Soodak RE
    J Neurophysiol; 1988 Dec; 60(6):2055-72. PubMed ID: 3236061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual cells of zebrafish optic tectum: mapping with small spots.
    Sajovic P; Levinthal C
    Neuroscience; 1982 Oct; 7(10):2407-26. PubMed ID: 7177381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form.
    Desimone R; Schein SJ
    J Neurophysiol; 1987 Mar; 57(3):835-68. PubMed ID: 3559704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.