These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 19938477)
1. [Effect of different carbon sources on pyruvic acid production by using lpdA gene knockout Escherichia coli]. Shen D; Feng X; Lin D; Yao S Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1345-51. PubMed ID: 19938477 [TBL] [Abstract][Full Text] [Related]
2. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli. Andersson C; Hodge D; Berglund KA; Rova U Biotechnol Prog; 2007; 23(2):381-8. PubMed ID: 17253726 [TBL] [Abstract][Full Text] [Related]
3. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments. Li M; Ho PY; Yao S; Shimizu K J Biotechnol; 2006 Mar; 122(2):254-66. PubMed ID: 16310273 [TBL] [Abstract][Full Text] [Related]
4. NADPH-dependent pgi-gene knockout Escherichia coli metabolism producing shikimate on different carbon sources. Ahn J; Chung BK; Lee DY; Park M; Karimi IA; Jung JK; Lee H FEMS Microbiol Lett; 2011 Nov; 324(1):10-6. PubMed ID: 22092758 [TBL] [Abstract][Full Text] [Related]
5. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
6. The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli. Tomar A; Eiteman MA; Altman E Appl Microbiol Biotechnol; 2003 Jul; 62(1):76-82. PubMed ID: 12835924 [TBL] [Abstract][Full Text] [Related]
7. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli. Zhu J; Shimizu K Appl Microbiol Biotechnol; 2004 Apr; 64(3):367-75. PubMed ID: 14673546 [TBL] [Abstract][Full Text] [Related]
8. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894 [TBL] [Abstract][Full Text] [Related]
9. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Vinuselvi P; Lee SK Enzyme Microb Technol; 2012 Jan; 50(1):1-4. PubMed ID: 22133432 [TBL] [Abstract][Full Text] [Related]
10. [Effects of fructose and maltose as aerobic carbon sources on subsequently anaerobic fermentation by Escherichia coli NZN111]. Wu H; Li Z; Ye Q Sheng Wu Gong Cheng Xue Bao; 2011 Sep; 27(9):1299-308. PubMed ID: 22117513 [TBL] [Abstract][Full Text] [Related]
11. Proteomics analysis of Bifidobacterium longum NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose. Liu D; Wang S; Xu B; Guo Y; Zhao J; Liu W; Sun Z; Shao C; Wei X; Jiang Z; Wang X; Liu F; Wang J; Huang L; Hu D; He X; Riedel CU; Yuan J Proteomics; 2011 Jul; 11(13):2628-38. PubMed ID: 21630463 [TBL] [Abstract][Full Text] [Related]
12. Aerobic production of alanine by Escherichia coli aceF ldhA mutants expressing the Bacillus sphaericus alaD gene. Lee M; Smith GM; Eiteman MA; Altman E Appl Microbiol Biotechnol; 2004 Jul; 65(1):56-60. PubMed ID: 15221229 [TBL] [Abstract][Full Text] [Related]
13. Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 Is limited by pyruvate decarboxylase. Huerta-Beristain G; Utrilla J; Hernández-Chávez G; Bolívar F; Gosset G; Martinez A J Mol Microbiol Biotechnol; 2008; 15(1):55-64. PubMed ID: 18349551 [TBL] [Abstract][Full Text] [Related]
15. Metabolic evolution of non-transgenic Escherichia coli SZ420 for enhanced homoethanol fermentation from xylose. Chen K; Iverson AG; Garza EA; Grayburn WS; Zhou S Biotechnol Lett; 2010 Jan; 32(1):87-96. PubMed ID: 19728107 [TBL] [Abstract][Full Text] [Related]
16. [Production of L-lactic acid from pentose by a genetically engineered Escherichia coli]. Zhao J; Xu L; Wang Y; Zhao X; Wang J Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):328-37. PubMed ID: 23858707 [TBL] [Abstract][Full Text] [Related]
17. A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Eiteman MA; Lee SA; Altman R; Altman E Biotechnol Bioeng; 2009 Feb; 102(3):822-7. PubMed ID: 18828178 [TBL] [Abstract][Full Text] [Related]
18. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Dien BS; Nichols NN; O'Bryan PJ; Bothast RJ Appl Biochem Biotechnol; 2000; 84-86():181-96. PubMed ID: 10849788 [TBL] [Abstract][Full Text] [Related]
19. Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid. Dien BS; Nichols NN; Bothast RJ J Ind Microbiol Biotechnol; 2002 Nov; 29(5):221-7. PubMed ID: 12407454 [TBL] [Abstract][Full Text] [Related]
20. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Zhao J; Baba T; Mori H; Shimizu K Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]