BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19938609)

  • 1. [Effect of cultivation parameters of antarctic strains Enterobacter hormaechei and Brevibacterium antarcticumon resistant to copper(II) ions].
    Tashyreva HO; Iutyns'ka HO; Tashyrev OB
    Mikrobiol Z; 2009; 71(4):3-8. PubMed ID: 19938609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Synthesis of melanin pigments by Antarctic black yeast].
    Tashirev AB; Romanovskaia VA; Rokitko PV; Matveeva NA; Shilin SO; Tashireva AA
    Mikrobiol Z; 2012; 74(5):2-8. PubMed ID: 23120979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Resistance of chemoorganotrophic bacteria isolated from Antarctic cliffs to toxic metals].
    Tashirev AB; Rokitko PV; Levishko AS; Romanovskaia VA; Tashireva AA
    Mikrobiol Z; 2012; 74(2):3-7. PubMed ID: 22686011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The effect of copper ions on the production of laccase by the fungus Lentinus (Panus) tigrinus].
    Shutova VV; Revin VV; Makushina IuA
    Prikl Biokhim Mikrobiol; 2008; 44(6):683-7. PubMed ID: 19145976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Adaptation of Antarctic microflora to cold and dryness as the basic extreme environmental factor].
    Liakh SP; Abyzov SS
    Izv Akad Nauk SSSR Biol; 1974; (5):688-98. PubMed ID: 4618849
    [No Abstract]   [Full Text] [Related]  

  • 6. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance.
    Lu WB; Shi JJ; Wang CH; Chang JS
    J Hazard Mater; 2006 Jun; 134(1-3):80-6. PubMed ID: 16310950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The action of Cu2+ on Bacillus thuringiensis growth investigated by microcalorimetry.
    Jun Y; Yi L; Yong T; Jianben L; Xiong C; Qin Z; Jiaxin D; Songsheng Q; Ziniu Y
    Prikl Biokhim Mikrobiol; 2003; 39(6):656-60. PubMed ID: 14714479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of divalent copper ions on heat denaturation of DNA].
    Blagoĭ IuP; Sorokin VA; Valeev VA; Gladchenko GO
    Mol Biol (Mosk); 1978; 12(4):795-805. PubMed ID: 683190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Electrooptical properties of soil nitrogen-fixing bacterium Azospirillum brasilense: effect of copper ions].
    Ignatov OV; Kamnev AA; Markina LN; Antoniuk LP; Kolina M; Ignatov VV
    Prikl Biokhim Mikrobiol; 2001; 37(2):247-52. PubMed ID: 11357434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Temperature range for growth of the Antarctic microorganisms].
    Romanovaskaia VA; Tashirev AB; Gladka GB; Tashireva AA
    Mikrobiol Z; 2012; 74(4):13-9. PubMed ID: 23088095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Microbiological analysis of terrestrial biotopes of the Antarctic region].
    Tashirev AB; Romanovskaia VA; Rokitko PV; Shilin SO; Chernaia NA; Tashireva AA
    Mikrobiol Z; 2010; 72(2):3-9. PubMed ID: 20455435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron demand by thermophilic and mesophilic bacteria isolated from an antarctic geothermal soil.
    Pepi M; Agnorelli C; Bargagli R
    Biometals; 2005 Oct; 18(5):529-36. PubMed ID: 16333753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The age-dependent effect of copper ions on different strains of the wine yeast (Saccharomyces [corrected] cerevisiae var vini)].
    Shatirishvili AF; Machavariani NA; Menabde MV
    Georgian Med News; 2008 Sep; (162):34-9. PubMed ID: 18830028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Search for psychrophilic methylotrophic bacteria in biotopes of the Antarctica].
    Romanovskaia VA; Shilin SO; Chernaia NA; Tashirev AB; Malashenko IuR; Rokitko PV
    Mikrobiol Z; 2005; 67(3):3-8. PubMed ID: 16018200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica.
    Stallwood B; Shears J; Williams PA; Hughes KA
    J Appl Microbiol; 2005; 99(4):794-802. PubMed ID: 16162230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils.
    Turpeinen R; Kairesalo T; Häggblom MM
    FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of copper ions on the fatty acid profiles of soil filamentous fungi.
    Olishevska SV; Karpenko YV; Zhdanova NM; Ostapchuk AM
    Mikrobiol Z; 2008; 70(6):59-66. PubMed ID: 19351050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of growth conditions on bacteriocin production by Brevibacterium linens.
    Motta AS; Brandelli A
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):163-7. PubMed ID: 12883862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of bioprocess for production of copper-enriched biomass of industrially important microorganism Saccharomyces cerevisiae.
    Mrvcić J; Stanzer D; Stehlik-Tomas V; Skevin D; Grba S
    J Biosci Bioeng; 2007 Apr; 103(4):331-7. PubMed ID: 17502274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Usefulness of the sensitivity-resistance index to estimate the toxicity of copper on bacteria in copper-contaminated soils.
    Kunito T; Senoo K; Saeki K; Oyaizu H; Matsumoto S
    Ecotoxicol Environ Saf; 1999 Oct; 44(2):182-9. PubMed ID: 10571465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.