These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19938612)

  • 1. [Monosaccharide composition of exopolymer complex of bacteria-destructors of protective coatings].
    Zanina VV; Kopteva ZhP; Iumyna IuM; Ostapchuk AN
    Mikrobiol Z; 2009; 71(4):21-7. PubMed ID: 19938612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Lipolytic and catalase activity of bacteria-destructors of protective coatings].
    Kopteva ZhP; Zanina VV; Kopteva AE; Aĭzenberg VL; Borisenko AV
    Mikrobiol Z; 2009; 71(4):45-50. PubMed ID: 19938616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Monosaccharide and fatty acid composition of exopolymer complex of bacteria-destructors of the protective coating of gas pipeline].
    Kopteva ZhP; Zanina VV; Boretskaia MA; Iumyna IuM; Kopteva AE; Kozlova IA
    Mikrobiol Z; 2012; 74(2):22-8. PubMed ID: 22686014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of corrosion inhibitor on the producing of exopolymer complex by sulphate-reducing bacteria].
    Purish LM; Asaulenko LH; Kozlova IP
    Mikrobiol Z; 2007; 69(3):43-50. PubMed ID: 17682530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Development of mono- and associative cultures of sulphate-reducing bacteria and formation of exopolymeric complex].
    Purish LM; Asaulenko LH; Ostapchuk AM
    Mikrobiol Z; 2009; 71(2):20-6. PubMed ID: 19938590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Role of exopolymeric substances of corrosion-aggressive bacteria in the biofilm formation on the steel surface].
    Purish LM; Asaulenko LH; Abdulina DR; Vasyl'ev VM; Iutyns'ka HO
    Mikrobiol Z; 2011; 73(1):3-9. PubMed ID: 21442946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Dynamics of microbial populations in the biofilm on protective coating].
    Iumyna IuM; Koptieva ZhP; Kozlova IP
    Mikrobiol Z; 2009; 71(3):37-41. PubMed ID: 19938604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Monosaccharide composition of exopolymer complex in Thiobacillus thioparus and Stenotrophomonas maltophilia].
    Borets'ka MO; Ostapchuk AM; Kozlova IP
    Ukr Biokhim Zh (1999); 2007; 79(5):140-4. PubMed ID: 18357787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Formation of microbial populations on the surface of protective coatings].
    Kopteva ZhP; Zanina VV; Piliashenko-Novokhatnyĭ AI; Kopteva AE; Kozlova IA
    Mikrobiol Z; 2001; 63(2):3-9. PubMed ID: 11558243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of the biofilm biopolymers on the microbial corrosion rate of the low-carbon steel].
    Borets'ka MO; Kozlova IP
    Mikrobiol Z; 2007; 69(4):40-4. PubMed ID: 17977451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of corrosion inhibitor on adhesion of sulfate-reducing bacteria to steel and their production of exopolymer complex].
    Purishch LM; Asaulenko LH; Koptieva ZhP; Kozlova IP
    Mikrobiol Z; 2004; 66(4):78-85. PubMed ID: 15515905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Role of polymer complexes in the formation of biofilms by corrosive bacteria on steel surfaces].
    Purish LM; Asaulenko LG; Abdulina DR; Vasil'ev VN; Iutinskaia GA
    Prikl Biokhim Mikrobiol; 2012; 48(3):294-301. PubMed ID: 22834300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biofilm on a metal surface as a factor of microbial corrosion].
    Borets'ka MO; Kozlova IP
    Mikrobiol Z; 2010; 72(3):57-65. PubMed ID: 20695231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Methods for estimation of microbe resistance of protective coatings].
    Zanina VV; Kopteva ZhP; Kopteva AE; Kozlova IA
    Mikrobiol Z; 2003; 65(5):41-5. PubMed ID: 14723162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular polysaccharides produced by cooling water tower biofilm bacteria and their possible degradation.
    Ceyhan N; Ozdemir G
    Biofouling; 2008; 24(2):129-35. PubMed ID: 18256966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.
    Delaunois F; Tosar F; Vitry V
    Bioelectrochemistry; 2014 Jun; 97():110-9. PubMed ID: 24503139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.
    Zuo R; Ornek D; Syrett BC; Green RM; Hsu CH; Mansfeld FB; Wood TK
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):275-83. PubMed ID: 12898064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment.
    Wikieł AJ; Datsenko I; Vera M; Sand W
    Bioelectrochemistry; 2014 Jun; 97():52-60. PubMed ID: 24238898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pioneer colonizer microorganisms in biofilm formation on galvanized steel in a simulated recirculating cooling-water system.
    Doğruöz N; Göksay D; Ilhan-Sungur E; Cotuk A
    J Basic Microbiol; 2009 Sep; 49 Suppl 1():S5-12. PubMed ID: 19455520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.
    Zuo R; Wood TK
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):747-53. PubMed ID: 15278311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.