These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 19938821)
1. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer. Algar WR; Krull UJ Anal Chem; 2010 Jan; 82(1):400-5. PubMed ID: 19938821 [TBL] [Abstract][Full Text] [Related]
2. Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence. Algar WR; Krull UJ Langmuir; 2010 Apr; 26(8):6041-7. PubMed ID: 20000340 [TBL] [Abstract][Full Text] [Related]
3. Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer. Algar WR; Krull UJ Anal Chem; 2009 May; 81(10):4113-20. PubMed ID: 19358559 [TBL] [Abstract][Full Text] [Related]
4. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer. Noor MO; Tavares AJ; Krull UJ Anal Chim Acta; 2013 Jul; 788():148-57. PubMed ID: 23845494 [TBL] [Abstract][Full Text] [Related]
5. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer. Algar WR; Krull UJ Langmuir; 2009 Jan; 25(1):633-8. PubMed ID: 19115878 [TBL] [Abstract][Full Text] [Related]
6. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer. Noor MO; Krull UJ Anal Chem; 2013 Aug; 85(15):7502-11. PubMed ID: 23837820 [TBL] [Abstract][Full Text] [Related]
7. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET). Algar WR; Krull UJ Anal Chim Acta; 2007 Jan; 581(2):193-201. PubMed ID: 17386444 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096 [TBL] [Abstract][Full Text] [Related]
9. Adsorption and hybridization of oligonucleotides on mercaptoacetic acid-capped CdSe/ZnS quantum dots and quantum dot-oligonucleotide conjugates. Algar WR; Krull UJ Langmuir; 2006 Dec; 22(26):11346-52. PubMed ID: 17154624 [TBL] [Abstract][Full Text] [Related]
10. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737 [TBL] [Abstract][Full Text] [Related]
11. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer. Chen L; Algar WR; Tavares AJ; Krull UJ Anal Bioanal Chem; 2011 Jan; 399(1):133-41. PubMed ID: 20978748 [TBL] [Abstract][Full Text] [Related]
13. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer. Noor MO; Shahmuradyan A; Krull UJ Anal Chem; 2013 Feb; 85(3):1860-7. PubMed ID: 23272728 [TBL] [Abstract][Full Text] [Related]
14. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Lu H; Schöps O; Woggon U; Niemeyer CM J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889 [TBL] [Abstract][Full Text] [Related]
15. Adapting fluorescence resonance energy transfer with quantum dot donors for solid-phase hybridization assays in microtiter plate format. Petryayeva E; Algar WR; Krull UJ Langmuir; 2013 Jan; 29(3):977-87. PubMed ID: 23298406 [TBL] [Abstract][Full Text] [Related]
16. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection. Noor MO; Hrovat D; Moazami-Goudarzi M; Espie GS; Krull UJ Anal Chim Acta; 2015 Jul; 885():156-65. PubMed ID: 26231901 [TBL] [Abstract][Full Text] [Related]
17. Quantum dot FRET-based probes in thin films grown in microfluidic channels. Crivat G; Da Silva SM; Reyes DR; Locascio LE; Gaitan M; Rosenzweig N; Rosenzweig Z J Am Chem Soc; 2010 Feb; 132(5):1460-1. PubMed ID: 20073459 [TBL] [Abstract][Full Text] [Related]
18. Compact quantum dot probes for rapid and sensitive DNA detection using highly efficient fluorescence resonant energy transfer. Wu CS; Cupps JM; Fan X Nanotechnology; 2009 Jul; 20(30):305502. PubMed ID: 19581695 [TBL] [Abstract][Full Text] [Related]
19. A competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors. Vannoy CH; Chong L; Le C; Krull UJ Anal Chim Acta; 2013 Jan; 759():92-9. PubMed ID: 23260681 [TBL] [Abstract][Full Text] [Related]
20. Förster resonance energy transfer investigations using quantum-dot fluorophores. Clapp AR; Medintz IL; Mattoussi H Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]