These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19938961)

  • 1. Normal human epithelial cells regulate the size and morphology of tissue-engineered capillaries.
    Rochon MH; Fradette J; Fortin V; Tomasetig F; Roberge CJ; Baker K; Berthod F; Auger FA; Germain L
    Tissue Eng Part A; 2010 May; 16(5):1457-68. PubMed ID: 19938961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using human umbilical cord cells for tissue engineering: a comparison with skin cells.
    Hayward CJ; Fradette J; Morissette Martin P; Guignard R; Germain L; Auger FA
    Differentiation; 2014; 87(3-4):172-81. PubMed ID: 24930038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion limits of an in vitro thick prevascularized tissue.
    Griffith CK; Miller C; Sainson RC; Calvert JW; Jeon NL; Hughes CC; George SC
    Tissue Eng; 2005; 11(1-2):257-66. PubMed ID: 15738680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular matrix deposition by fibroblasts is necessary to promote capillary-like tube formation in vitro.
    Berthod F; Germain L; Tremblay N; Auger FA
    J Cell Physiol; 2006 May; 207(2):491-8. PubMed ID: 16453301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting.
    Larouche D; Cuffley K; Paquet C; Germain L
    Tissue Eng Part A; 2011 Mar; 17(5-6):819-30. PubMed ID: 20973750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Construction of a tissue engineering skin containing capillary-like network].
    Liu Y; Jin Y; Wang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Nov; 18(6):502-4. PubMed ID: 15586714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human epithelial stem cells persist within tissue-engineered skin produced by the self-assembly approach.
    Lavoie A; Fugère C; Beauparlant A; Goyer B; Larouche D; Paquet C; Desgagné M; Sauvé S; Robitaille H; Dunnwald M; Kim DH; Pouliot R; Fradette J; Germain L
    Tissue Eng Part A; 2013 Apr; 19(7-8):1023-38. PubMed ID: 23173810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of adipose mesenchymal stem cells and human umbilical vascular endothelial cells on a fibrin matrix for endothelialized skin substitute.
    Sánchez-Muñoz I; Granados R; Holguín Holgado P; García-Vela JA; Casares C; Casares M
    Tissue Eng Part A; 2015 Jan; 21(1-2):214-23. PubMed ID: 25007712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creating capillary networks within human engineered tissues: impact of adipocytes and their secretory products.
    Aubin K; Vincent C; Proulx M; Mayrand D; Fradette J
    Acta Biomater; 2015 Jan; 11():333-45. PubMed ID: 25278444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of vascular endothelial growth factor by fibrin as a dermal substrate for cultured skin substitute.
    Hojo M; Inokuchi S; Kidokoro M; Fukuyama N; Tanaka E; Tsuji C; Miyasaka M; Tanino R; Nakazawa H
    Plast Reconstr Surg; 2003 Apr; 111(5):1638-45. PubMed ID: 12655209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro reconstruction of an endothelialized skin substitute provided with a microcapillary network using biopolymer scaffolds.
    Tonello C; Vindigni V; Zavan B; Abatangelo S; Abatangelo G; Brun P; Cortivo R
    FASEB J; 2005 Sep; 19(11):1546-8. PubMed ID: 15972294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of endothelialized tube in collagen gel as starting point for self-developing capillary-like network to construct three-dimensional organs in vitro.
    Takei T; Sakai S; Ono T; Ijima H; Kawakami K
    Biotechnol Bioeng; 2006 Sep; 95(1):1-7. PubMed ID: 16604522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A preexisting microvascular network benefits in vivo revascularization of a microvascularized tissue-engineered skin substitute.
    Gibot L; Galbraith T; Huot J; Auger FA
    Tissue Eng Part A; 2010 Oct; 16(10):3199-206. PubMed ID: 20528673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of the angiostatic potential of drugs using an endothelialized tissue-engineered connective tissue.
    Tremblay PL; Berthod F; Germain L; Auger FA
    J Pharmacol Exp Ther; 2005 Nov; 315(2):510-6. PubMed ID: 16055674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of cell source on human cornea reconstructed by tissue engineering.
    Carrier P; Deschambeault A; Audet C; Talbot M; Gauvin R; Giasson CJ; Auger FA; Guérin SL; Germain L
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2645-52. PubMed ID: 19218610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructure of blood and lymphatic vascular networks in three-dimensional cultured tissues fabricated by extracellular matrix nanofilm-based cell accumulation technique.
    Asano Y; Nishiguchi A; Matsusaki M; Okano D; Saito E; Akashi M; Shimoda H
    Microscopy (Oxf); 2014 Jun; 63(3):219-26. PubMed ID: 24549188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of skin and cornea by tissue engineering.
    Larouche D; Paquet C; Fradette J; Carrier P; Auger FA; Germain L
    Methods Mol Biol; 2009; 482():233-56. PubMed ID: 19089360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrotic remodeling of tissue-engineered skin with deep dermal fibroblasts is reduced by keratinocytes.
    Varkey M; Ding J; Tredget EE
    Tissue Eng Part A; 2014 Feb; 20(3-4):716-27. PubMed ID: 24090416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts.
    Varkey M; Ding J; Tredget EE;
    Biomaterials; 2014 Dec; 35(36):9591-8. PubMed ID: 25176070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditioned medium produced by fibroblasts cultured in low oxygen pressure allows the formation of highly structured capillary-like networks in fibrin gels.
    Caneparo C; Baratange C; Chabaud S; Bolduc S
    Sci Rep; 2020 Jun; 10(1):9291. PubMed ID: 32518266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.