These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 19939221)
1. Properties and clinical development of a novel coating technology: the poly[bis(trifluoroethoxy)phosphazene]. Capodanno D; Tamburino C Recent Pat Drug Deliv Formul; 2010 Jan; 4(1):18-22. PubMed ID: 19939221 [TBL] [Abstract][Full Text] [Related]
2. Radiation grafting of hydrophilic monomers onto poly[bis(trifluoroethoxy)phosphazene]. Lora S; Palma G; Carenza M; Caliceti P; Pezzin G Biomaterials; 1994 Sep; 15(11):937-43. PubMed ID: 7833444 [TBL] [Abstract][Full Text] [Related]
3. Polyphosphazenes as biomaterials: surface modification of poly(bis(trifluoroethoxy)phosphazene) with polyethylene glycols. Lora S; Palma G; Bozio R; Caliceti P; Pezzin G Biomaterials; 1993 May; 14(6):430-6. PubMed ID: 8507789 [TBL] [Abstract][Full Text] [Related]
4. The efficacy of nanoscale poly[bis(trifluoroethoxy) phosphazene] (PTFEP) coatings in reducing thrombogenicity and late in-stent stenosis in a porcine coronary artery model. Satzl S; Henn C; Christoph P; Kurz P; Stampfl U; Stampfl S; Thomas F; Radeleff B; Berger I; Grunze M; Richter GM Invest Radiol; 2007 May; 42(5):303-11. PubMed ID: 17414526 [TBL] [Abstract][Full Text] [Related]
5. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses. Xu LC; Li Z; Tian Z; Chen C; Allcock HR; Siedlecki CA Acta Biomater; 2018 Feb; 67():87-98. PubMed ID: 29229544 [TBL] [Abstract][Full Text] [Related]
6. A new polymer concept for coating of vascular stents using PTFEP (poly(bis(trifluoroethoxy)phosphazene) to reduce thrombogenicity and late in-stent stenosis. Richter GM; Stampfl U; Stampfl S; Rehnitz C; Holler S; Schnabel P; Grunze M Invest Radiol; 2005 Apr; 40(4):210-8. PubMed ID: 15770139 [TBL] [Abstract][Full Text] [Related]
7. Biocompatibility of biodegradable and nonbiodegradable polymer-coated stents implanted in porcine peripheral arteries. De Scheerder IK; Wilczek KL; Verbeken EV; Vandorpe J; Lan PN; Schacht E; Piessens J; De Geest H Cardiovasc Intervent Radiol; 1995; 18(4):227-32. PubMed ID: 8581902 [TBL] [Abstract][Full Text] [Related]
8. Degradable phosphazene polymers and blends for biomedical applications. Carenza M; Lora S; Fambri L Adv Exp Med Biol; 2004; 553():113-22. PubMed ID: 15503451 [No Abstract] [Full Text] [Related]
9. Efficacy of a polyphosphazene nanocoat in reducing thrombogenicity, in-stent stenosis, and inflammatory response in porcine renal and iliac artery stents. Henn C; Satzl S; Christoph P; Kurz P; Radeleff B; Stampfl U; Stampfl S; Berger I; Richter GM J Vasc Interv Radiol; 2008 Mar; 19(3):427-37. PubMed ID: 18295704 [TBL] [Abstract][Full Text] [Related]
10. Long circulating biodegradable poly(phosphazene) nanoparticles surface modified with poly(phosphazene)-poly(ethylene oxide) copolymer. Vandorpe J; Schacht E; Dunn S; Hawley A; Stolnik S; Davis SS; Garnett MC; Davies MC; Illum L Biomaterials; 1997 Sep; 18(17):1147-52. PubMed ID: 9259511 [TBL] [Abstract][Full Text] [Related]
11. Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: Side group effects. Sethuraman S; Nair LS; El-Amin S; Nguyen MT; Singh A; Krogman N; Greish YE; Allcock HR; Brown PW; Laurencin CT Acta Biomater; 2010 Jun; 6(6):1931-7. PubMed ID: 20004751 [TBL] [Abstract][Full Text] [Related]
12. Long-term biocompatibility evaluation of a novel polymer-coated stent in a porcine coronary stent model. Huang Y; Liu X; Wang L; Li S; Verbeken E; De Scheerder I Coron Artery Dis; 2003 Aug; 14(5):401-8. PubMed ID: 12878906 [TBL] [Abstract][Full Text] [Related]