BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19939227)

  • 21. Cholinesterases within neurofibrillary tangles related to age and Alzheimer's disease.
    Mesulam MM; Asuncion Morán M
    Ann Neurol; 1987 Aug; 22(2):223-8. PubMed ID: 3662453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in brain cholinesterases in senile dementia of Alzheimer type.
    Perry EK; Perry RH; Blessed G; Tomlinson BE
    Neuropathol Appl Neurobiol; 1978; 4(4):273-7. PubMed ID: 703927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholinesterases colocalize with sites of neurofibrillary degeneration in aged and Alzheimer's brains.
    Morán MA; Mufson EJ; Gómez-Ramos P
    Acta Neuropathol; 1994; 87(3):284-92. PubMed ID: 8009960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A method for the efficient evaluation of substrate-based cholinesterase imaging probes for Alzheimer's disease.
    Darvesh S; Banfield S; Dufour M; Forrestall KL; Maillet H; Reid GA; Sands D; Pottie IR
    J Enzyme Inhib Med Chem; 2023 Dec; 38(1):2225797. PubMed ID: 38061987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ratio of acetylcholinesterase to butyrylcholinesterase influences the specificity of assays for each enzyme in human brain.
    Huff FJ; Reiter CT; Rand JB
    J Neural Transm; 1989; 75(2):129-34. PubMed ID: 2918305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulatory effect of caffeic acid on cholinesterases inhibitory properties of donepezil.
    Agunloye OM; Oboh G
    J Complement Integr Med; 2017 Sep; 15(1):. PubMed ID: 28941354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Silico Docking and In Vitro Approaches towards BACE1 and Cholinesterases Inhibitory Effect of Citrus Flavanones.
    Lee S; Youn K; Lim G; Lee J; Jun M
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29932100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of two different cholinesterases by tacrine.
    Ahmed M; Rocha JB; Corrêa M; Mazzanti CM; Zanin RF; Morsch AL; Morsch VM; Schetinger MR
    Chem Biol Interact; 2006 Aug; 162(2):165-71. PubMed ID: 16860785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholinesterases in the amyloid angiopathy of Alzheimer's disease.
    Mesulam M; Carson K; Price B; Geula C
    Ann Neurol; 1992 May; 31(5):565-9. PubMed ID: 1375822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrastructural localization of butyrylcholinesterase in senile plaques in the brains of aged and Alzheimer disease patients.
    Gómez-Ramos P; Morán MA
    Mol Chem Neuropathol; 1997 Apr; 30(3):161-73. PubMed ID: 9165483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain cholinesterases: I. The clinico-histopathological and biochemical basis of Alzheimer's disease.
    Shen ZX
    Med Hypotheses; 2004; 63(2):285-97. PubMed ID: 15236793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The importance of neuritic plaques and tangles to the development and evolution of AD.
    Tiraboschi P; Hansen LA; Thal LJ; Corey-Bloom J
    Neurology; 2004 Jun; 62(11):1984-9. PubMed ID: 15184601
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Empirical evidence of neuroprotection by dual cholinesterase inhibition in Alzheimer's disease.
    Venneri A; McGeown WJ; Shanks MF
    Neuroreport; 2005 Feb; 16(2):107-10. PubMed ID: 15671856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase.
    Nachon F; Carletti E; Ronco C; Trovaslet M; Nicolet Y; Jean L; Renard PY
    Biochem J; 2013 Aug; 453(3):393-9. PubMed ID: 23679855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Histochemical characterization of cholinesterase activity in the frog brain with special reference to its localization on the wall of blood vessels.
    Contestabile A
    Histochem J; 1976 Sep; 8(5):513-21. PubMed ID: 1085770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholinesterases inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones.
    Shah MS; Khan SU; Ejaz SA; Afridi S; Rizvi SUF; Najam-Ul-Haq M; Iqbal J
    Biochem Biophys Res Commun; 2017 Jan; 482(4):615-624. PubMed ID: 27865835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and biological activity of derivatives of tetrahydroacridine as acetylcholinesterase inhibitors.
    Szymański P; Markowicz M; Mikiciuk-Olasik E
    Bioorg Chem; 2011 Aug; 39(4):138-42. PubMed ID: 21621811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cholinesterase Inhibitory Activity of Some semi-Rigid Spiro Heterocycles: POM Analyses and Crystalline Structure of Pharmacophore Site.
    Hadda TB; Talhi O; Silva ASM; Senol FS; Orhan IE; Rauf A; Mabkhot YN; Bachari K; Warad I; Farghaly TA; Althagafi II; Mubarak MS
    Mini Rev Med Chem; 2018; 18(8):711-716. PubMed ID: 28714400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Cholinesterases and their importance in the etiology, diagnosis and therapy of Alzheimer's disease].
    Patocka J; Strunecká A; Rípová D
    Cesk Fysiol; 2001 Feb; 50(1):4-10. PubMed ID: 11268561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cholinesterase inhibitors: new roles and therapeutic alternatives.
    Giacobini E
    Pharmacol Res; 2004 Oct; 50(4):433-40. PubMed ID: 15304240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.