These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

637 related articles for article (PubMed ID: 19939265)

  • 1. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration.
    Subramanian A; Krishnan UM; Sethuraman S
    J Biomed Sci; 2009 Nov; 16(1):108. PubMed ID: 19939265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomaterials and cells for neural tissue engineering: Current choices.
    Sensharma P; Madhumathi G; Jayant RD; Jaiswal AK
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1302-1315. PubMed ID: 28532008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells.
    Nie X; Wang DA
    Biomater Sci; 2018 Oct; 6(11):2798-2811. PubMed ID: 30229775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomaterial scaffolds for tissue engineering.
    Mallick KK; Cox SC
    Front Biosci (Elite Ed); 2013 Jan; 5(1):341-60. PubMed ID: 23276994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural tissue engineering: the influence of scaffold surface topography and extracellular matrix microenvironment.
    Yang CY; Huang WY; Chen LH; Liang NW; Wang HC; Lu J; Wang X; Wang TW
    J Mater Chem B; 2021 Jan; 9(3):567-584. PubMed ID: 33289776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell culture in autologous fibrin scaffolds for applications in tissue engineering.
    de la Puente P; LudeƱa D
    Exp Cell Res; 2014 Mar; 322(1):1-11. PubMed ID: 24378385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications.
    Bello AB; Kim D; Kim D; Park H; Lee SH
    Tissue Eng Part B Rev; 2020 Apr; 26(2):164-180. PubMed ID: 31910095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration.
    Gu X; Ding F; Yang Y; Liu J
    Prog Neurobiol; 2011 Feb; 93(2):204-30. PubMed ID: 21130136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering.
    Ko HF; Sfeir C; Kumta PN
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1981-97. PubMed ID: 20308112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piezoelectric materials for neuroregeneration: a review.
    Wu L; Gao H; Han Q; Guan W; Sun S; Zheng T; Liu Y; Wang X; Huang R; Li G
    Biomater Sci; 2023 Nov; 11(22):7296-7310. PubMed ID: 37812084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel 3D Neuron Regeneration Scaffolds Based on Synthetic Polypeptide Containing Neuron Cue.
    Wang ZH; Chang YY; Wu JG; Lin CY; An HL; Luo SC; Tang TK; Su WF
    Macromol Biosci; 2018 Mar; 18(3):. PubMed ID: 29231281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review.
    Chaudhari AA; Vig K; Baganizi DR; Sahu R; Dixit S; Dennis V; Singh SR; Pillai SR
    Int J Mol Sci; 2016 Nov; 17(12):. PubMed ID: 27898014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable and Electrically Conductive Melanin-Poly (3-Hydroxybutyrate) 3D Fibrous Scaffolds for Neural Tissue Engineering Applications.
    Agrawal L; Vimal SK; Barzaghi P; Shiga T; Terenzio M
    Macromol Biosci; 2022 Dec; 22(12):e2200315. PubMed ID: 36114714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive peptide-modified biomaterials for bone regeneration.
    Lee JY; Choi YS; Lee SJ; Chung CP; Park YJ
    Curr Pharm Des; 2011; 17(25):2663-76. PubMed ID: 21728982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of nanofibrous scaffolds in neural tissue engineering.
    Cao H; Liu T; Chew SY
    Adv Drug Deliv Rev; 2009 Oct; 61(12):1055-64. PubMed ID: 19643156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycomics: New Challenges and Opportunities in Regenerative Medicine.
    Russo L; Cipolla L
    Chemistry; 2016 Sep; 22(38):13380-8. PubMed ID: 27400428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue.
    Causa F; Netti PA; Ambrosio L
    Biomaterials; 2007 Dec; 28(34):5093-9. PubMed ID: 17675151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decellularized Extracellular Matrix Materials for Cardiac Repair and Regeneration.
    Bejleri D; Davis ME
    Adv Healthc Mater; 2019 Mar; 8(5):e1801217. PubMed ID: 30714354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.