These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 19939564)

  • 1. Dynamic behavior of amplitude detection Kelvin force microscopy in ultrahigh vacuum.
    Diesinger H; Deresmes D; Nys JP; Mélin T
    Ultramicroscopy; 2010 Jan; 110(2):162-9. PubMed ID: 19939564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kelvin force microscopy at the second cantilever resonance: an out-of-vacuum crosstalk compensation setup.
    Diesinger H; Deresmes D; Nys JP; Mélin T
    Ultramicroscopy; 2008 Jul; 108(8):773-81. PubMed ID: 18342448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise performance of frequency modulation Kelvin force microscopy.
    Diesinger H; Deresmes D; Mélin T
    Beilstein J Nanotechnol; 2014 Jan; 5():1-18. PubMed ID: 24455457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of a dynamic scanning force microscope for highest resolution imaging in ultrahigh vacuum.
    Torbrügge S; Lübbe J; Tröger L; Cranney M; Eguchi T; Hasegawa Y; Reichling M
    Rev Sci Instrum; 2008 Aug; 79(8):083701. PubMed ID: 19044351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel amplitude and frequency demodulation algorithm for a virtual dynamic atomic force microscope.
    Kokavecz J; Tóth Z; Horváth ZL; Heszler P; Mechler A
    Nanotechnology; 2006 Apr; 17(7):S173-7. PubMed ID: 21727410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneously measured signals in scanning probe microscopy with a needle sensor: frequency shift and tunneling current.
    Morawski I; Voigtländer B
    Rev Sci Instrum; 2010 Mar; 81(3):033703. PubMed ID: 20370181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-loop band excitation Kelvin probe force microscopy.
    Guo S; Kalinin SV; Jesse S
    Nanotechnology; 2012 Mar; 23(12):125704. PubMed ID: 22407131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface photovoltage spectroscopy in a Kelvin probe force microscope under ultrahigh vacuum.
    Streicher F; Sadewasser S; Lux-Steiner MCh
    Rev Sci Instrum; 2009 Jan; 80(1):013907. PubMed ID: 19191447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of KFM performance by intermittent bias application method and by sampling detection of cantilever deflection.
    Takahashi T; Matsumoto T; Ono S
    Ultramicroscopy; 2009 Jul; 109(8):963-7. PubMed ID: 19345495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tip-to-sample distance dependence of an electrostatic force in KFM measurements.
    Takahashi T; Ono S
    Ultramicroscopy; 2004 Aug; 100(3-4):287-92. PubMed ID: 15231321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iterative image-based modeling and control for higher scanning probe microscope performance.
    Clayton GM; Devasia S
    Rev Sci Instrum; 2007 Aug; 78(8):083704. PubMed ID: 17764326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constant-distance mode scanning electrochemical microscopy (SECM)--Part I: Adaptation of a non-optical shear-force-based positioning mode for SECM tips.
    Ballesteros Katemann B; Schulte A; Schuhmann W
    Chemistry; 2003 May; 9(9):2025-33. PubMed ID: 12740850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy.
    Nony L; Bocquet F; Loppacher C; Glatzel T
    Nanotechnology; 2009 Jul; 20(26):264014. PubMed ID: 19509441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Note: Quantitative (artifact-free) surface potential measurements using Kelvin force microscopy.
    Mélin T; Barbet S; Diesinger H; Théron D; Deresmes D
    Rev Sci Instrum; 2011 Mar; 82(3):036101. PubMed ID: 21456803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force gradient sensitive detection in lift-mode Kelvin probe force microscopy.
    Ziegler D; Stemmer A
    Nanotechnology; 2011 Feb; 22(7):075501. PubMed ID: 21233549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing dynamic scanning force microscopy in air: as close as possible.
    Palacios-Lidón E; Pérez-García B; Colchero J
    Nanotechnology; 2009 Feb; 20(8):085707. PubMed ID: 19417468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge drives for scanning probe microscope positioning stages.
    Fleming AJ; Leang KK
    Ultramicroscopy; 2008 Nov; 108(12):1551-7. PubMed ID: 18586402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope.
    Li Y; Bechhoefer J
    Rev Sci Instrum; 2007 Jan; 78(1):013702. PubMed ID: 17503923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kelvin probe force microscopy for local characterisation of active nanoelectronic devices.
    Wagner T; Beyer H; Reissner P; Mensch P; Riel H; Gotsmann B; Stemmer A
    Beilstein J Nanotechnol; 2015; 6():2193-206. PubMed ID: 26734511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.