BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19939942)

  • 1. Subcellular flux analysis of central metabolism in a heterotrophic Arabidopsis cell suspension using steady-state stable isotope labeling.
    Masakapalli SK; Le Lay P; Huddleston JE; Pollock NL; Kruger NJ; Ratcliffe RG
    Plant Physiol; 2010 Feb; 152(2):602-19. PubMed ID: 19939942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a flexible balance between the cytosolic and plastidic contributions to carbohydrate oxidation in response to phosphate limitation.
    Masakapalli SK; Bryant FM; Kruger NJ; Ratcliffe RG
    Plant J; 2014 Jun; 78(6):964-77. PubMed ID: 24674596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designer labels for plant metabolism: statistical design of isotope labeling experiments for improved quantification of flux in complex plant metabolic networks.
    Nargund S; Sriram G
    Mol Biosyst; 2013 Jan; 9(1):99-112. PubMed ID: 23114423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a complex response to changes in nitrogen supply.
    Masakapalli SK; Kruger NJ; Ratcliffe RG
    Plant J; 2013 May; 74(4):569-82. PubMed ID: 23406511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for investigating the plant metabolic network with steady-state metabolic flux analysis: lessons from an Arabidopsis cell culture and other systems.
    Kruger NJ; Masakapalli SK; Ratcliffe RG
    J Exp Bot; 2012 Mar; 63(6):2309-23. PubMed ID: 22140245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic network fluxes in heterotrophic Arabidopsis cells: stability of the flux distribution under different oxygenation conditions.
    Williams TC; Miguet L; Masakapalli SK; Kruger NJ; Sweetlove LJ; Ratcliffe RG
    Plant Physiol; 2008 Oct; 148(2):704-18. PubMed ID: 18667721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of steady-state ¹³C-labeling experiments for metabolic flux analysis.
    Kruger NJ; Masakapalli SK; Ratcliffe RG
    Methods Mol Biol; 2014; 1090():53-72. PubMed ID: 24222409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway.
    Gebril HM; Avula B; Wang YH; Khan IA; Jekabsons MB
    Neurochem Int; 2016 Feb; 93():26-39. PubMed ID: 26723542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for transketolase-like TKTL1 flux in CHO cells based on parallel labeling experiments and (13)C-metabolic flux analysis.
    Ahn WS; Crown SB; Antoniewicz MR
    Metab Eng; 2016 Sep; 37():72-78. PubMed ID: 27174718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions.
    Williams TC; Poolman MG; Howden AJ; Schwarzlander M; Fell DA; Ratcliffe RG; Sweetlove LJ
    Plant Physiol; 2010 Sep; 154(1):311-23. PubMed ID: 20605915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Updates to a
    Jekabsons MB; Gebril HM; Wang YH; Avula B; Khan IA
    Neurochem Int; 2017 Oct; 109():54-67. PubMed ID: 28412312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacuolar compartmentation complicates the steady-state analysis of glucose metabolism and forces reappraisal of sucrose cycling in plants.
    Kruger NJ; Le Lay P; Ratcliffe RG
    Phytochemistry; 2007; 68(16-18):2189-96. PubMed ID: 17524437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network flux analysis: impact of 13C-substrates on metabolism in Arabidopsis thaliana cell suspension cultures.
    Kruger NJ; Huddleston JE; Le Lay P; Brown ND; Ratcliffe RG
    Phytochemistry; 2007; 68(16-18):2176-88. PubMed ID: 17499825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions.
    Cheung CY; Williams TC; Poolman MG; Fell DA; Ratcliffe RG; Sweetlove LJ
    Plant J; 2013 Sep; 75(6):1050-61. PubMed ID: 23738527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oxidative pentose phosphate pathway: structure and organisation.
    Kruger NJ; von Schaewen A
    Curr Opin Plant Biol; 2003 Jun; 6(3):236-46. PubMed ID: 12753973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial metabolism in developing embryos of Brassica napus.
    Schwender J; Shachar-Hill Y; Ohlrogge JB
    J Biol Chem; 2006 Nov; 281(45):34040-7. PubMed ID: 16971389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of metabolic fluxes in a non-steady-state system.
    Baxter CJ; Liu JL; Fernie AR; Sweetlove LJ
    Phytochemistry; 2007; 68(16-18):2313-9. PubMed ID: 17582446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.
    Nargund S; Qiu J; Goudar CT
    Biotechnol Prog; 2015; 31(5):1179-86. PubMed ID: 26097228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into plant metabolic networks from steady-state metabolic flux analysis.
    Kruger NJ; Ratcliffe RG
    Biochimie; 2009 Jun; 91(6):697-702. PubMed ID: 19455743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic metabolic flux analysis of plant cell wall synthesis.
    Chen X; Alonso AP; Shachar-Hill Y
    Metab Eng; 2013 Jul; 18():78-85. PubMed ID: 23644173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.