These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19939942)

  • 1. Subcellular flux analysis of central metabolism in a heterotrophic Arabidopsis cell suspension using steady-state stable isotope labeling.
    Masakapalli SK; Le Lay P; Huddleston JE; Pollock NL; Kruger NJ; Ratcliffe RG
    Plant Physiol; 2010 Feb; 152(2):602-19. PubMed ID: 19939942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a flexible balance between the cytosolic and plastidic contributions to carbohydrate oxidation in response to phosphate limitation.
    Masakapalli SK; Bryant FM; Kruger NJ; Ratcliffe RG
    Plant J; 2014 Jun; 78(6):964-77. PubMed ID: 24674596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designer labels for plant metabolism: statistical design of isotope labeling experiments for improved quantification of flux in complex plant metabolic networks.
    Nargund S; Sriram G
    Mol Biosyst; 2013 Jan; 9(1):99-112. PubMed ID: 23114423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a complex response to changes in nitrogen supply.
    Masakapalli SK; Kruger NJ; Ratcliffe RG
    Plant J; 2013 May; 74(4):569-82. PubMed ID: 23406511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for investigating the plant metabolic network with steady-state metabolic flux analysis: lessons from an Arabidopsis cell culture and other systems.
    Kruger NJ; Masakapalli SK; Ratcliffe RG
    J Exp Bot; 2012 Mar; 63(6):2309-23. PubMed ID: 22140245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic network fluxes in heterotrophic Arabidopsis cells: stability of the flux distribution under different oxygenation conditions.
    Williams TC; Miguet L; Masakapalli SK; Kruger NJ; Sweetlove LJ; Ratcliffe RG
    Plant Physiol; 2008 Oct; 148(2):704-18. PubMed ID: 18667721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of steady-state ¹³C-labeling experiments for metabolic flux analysis.
    Kruger NJ; Masakapalli SK; Ratcliffe RG
    Methods Mol Biol; 2014; 1090():53-72. PubMed ID: 24222409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway.
    Gebril HM; Avula B; Wang YH; Khan IA; Jekabsons MB
    Neurochem Int; 2016 Feb; 93():26-39. PubMed ID: 26723542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for transketolase-like TKTL1 flux in CHO cells based on parallel labeling experiments and (13)C-metabolic flux analysis.
    Ahn WS; Crown SB; Antoniewicz MR
    Metab Eng; 2016 Sep; 37():72-78. PubMed ID: 27174718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions.
    Williams TC; Poolman MG; Howden AJ; Schwarzlander M; Fell DA; Ratcliffe RG; Sweetlove LJ
    Plant Physiol; 2010 Sep; 154(1):311-23. PubMed ID: 20605915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Updates to a
    Jekabsons MB; Gebril HM; Wang YH; Avula B; Khan IA
    Neurochem Int; 2017 Oct; 109():54-67. PubMed ID: 28412312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacuolar compartmentation complicates the steady-state analysis of glucose metabolism and forces reappraisal of sucrose cycling in plants.
    Kruger NJ; Le Lay P; Ratcliffe RG
    Phytochemistry; 2007; 68(16-18):2189-96. PubMed ID: 17524437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network flux analysis: impact of 13C-substrates on metabolism in Arabidopsis thaliana cell suspension cultures.
    Kruger NJ; Huddleston JE; Le Lay P; Brown ND; Ratcliffe RG
    Phytochemistry; 2007; 68(16-18):2176-88. PubMed ID: 17499825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions.
    Cheung CY; Williams TC; Poolman MG; Fell DA; Ratcliffe RG; Sweetlove LJ
    Plant J; 2013 Sep; 75(6):1050-61. PubMed ID: 23738527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The oxidative pentose phosphate pathway: structure and organisation.
    Kruger NJ; von Schaewen A
    Curr Opin Plant Biol; 2003 Jun; 6(3):236-46. PubMed ID: 12753973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial metabolism in developing embryos of Brassica napus.
    Schwender J; Shachar-Hill Y; Ohlrogge JB
    J Biol Chem; 2006 Nov; 281(45):34040-7. PubMed ID: 16971389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of metabolic fluxes in a non-steady-state system.
    Baxter CJ; Liu JL; Fernie AR; Sweetlove LJ
    Phytochemistry; 2007; 68(16-18):2313-9. PubMed ID: 17582446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.
    Nargund S; Qiu J; Goudar CT
    Biotechnol Prog; 2015; 31(5):1179-86. PubMed ID: 26097228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into plant metabolic networks from steady-state metabolic flux analysis.
    Kruger NJ; Ratcliffe RG
    Biochimie; 2009 Jun; 91(6):697-702. PubMed ID: 19455743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic metabolic flux analysis of plant cell wall synthesis.
    Chen X; Alonso AP; Shachar-Hill Y
    Metab Eng; 2013 Jul; 18():78-85. PubMed ID: 23644173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.