These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19939974)

  • 1. Restricted feeding-induced sleep, activity, and body temperature changes in normal and preproghrelin-deficient mice.
    Szentirmai E; Kapás L; Sun Y; Smith RG; Krueger JM
    Am J Physiol Regul Integr Comp Physiol; 2010 Feb; 298(2):R467-77. PubMed ID: 19939974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired wake-promoting mechanisms in ghrelin receptor-deficient mice.
    Esposito M; Pellinen J; Kapás L; Szentirmai É
    Eur J Neurosci; 2012 Jan; 35(2):233-43. PubMed ID: 22211783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sickness behaviour after lipopolysaccharide treatment in ghrelin deficient mice.
    Szentirmai É; Krueger JM
    Brain Behav Immun; 2014 Feb; 36():200-6. PubMed ID: 24309634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep and body temperature in TNFα knockout mice: The effects of sleep deprivation, β3-AR stimulation and exogenous TNFα.
    Szentirmai É; Kapás L
    Brain Behav Immun; 2019 Oct; 81():260-271. PubMed ID: 31220563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice.
    Kaur S; Thankachan S; Begum S; Blanco-Centurion C; Sakurai T; Yanagisawa M; Shiromani PJ
    Brain Res; 2008 Apr; 1205():47-54. PubMed ID: 18343358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous sleep and homeostatic sleep regulation in ghrelin knockout mice.
    Szentirmai E; Kapás L; Sun Y; Smith RG; Krueger JM
    Am J Physiol Regul Integr Comp Physiol; 2007 Jul; 293(1):R510-7. PubMed ID: 17409264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1.
    Baracchi F; Opp MR
    Brain Behav Immun; 2008 Aug; 22(6):982-93. PubMed ID: 18329246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep homeostasis during daytime food entrainment in mice.
    Northeast RC; Huang Y; McKillop LE; Bechtold DA; Peirson SN; Piggins HD; Vyazovskiy VV
    Sleep; 2019 Oct; 42(11):. PubMed ID: 31329251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single gene deletions of orexin, leptin, neuropeptide Y, and ghrelin do not appreciably alter food anticipatory activity in mice.
    Gunapala KM; Gallardo CM; Hsu CT; Steele AD
    PLoS One; 2011 Mar; 6(3):e18377. PubMed ID: 21464907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central but not systemic administration of ghrelin induces wakefulness in mice.
    Szentirmai É
    PLoS One; 2012; 7(7):e41172. PubMed ID: 22815958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice.
    Blum ID; Patterson Z; Khazall R; Lamont EW; Sleeman MW; Horvath TL; Abizaid A
    Neuroscience; 2009 Dec; 164(2):351-9. PubMed ID: 19666088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of glycogen synthase kinase-3-beta activity leads to abnormalities in physiological measures in mice.
    Ahnaou A; Drinkenburg WH
    Behav Brain Res; 2011 Aug; 221(1):246-52. PubMed ID: 21392539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness.
    Mieda M; Williams SC; Sinton CM; Richardson JA; Sakurai T; Yanagisawa M
    J Neurosci; 2004 Nov; 24(46):10493-501. PubMed ID: 15548664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust food anticipatory activity in BMAL1-deficient mice.
    Pendergast JS; Nakamura W; Friday RC; Hatanaka F; Takumi T; Yamazaki S
    PLoS One; 2009; 4(3):e4860. PubMed ID: 19300505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous, homeostatic, and inflammation-induced sleep in NF-kappaB p50 knockout mice.
    Jhaveri KA; Ramkumar V; Trammell RA; Toth LA
    Am J Physiol Regul Integr Comp Physiol; 2006 Nov; 291(5):R1516-26. PubMed ID: 16793936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered sleep regulation in leptin-deficient mice.
    Laposky AD; Shelton J; Bass J; Dugovic C; Perrino N; Turek FW
    Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R894-903. PubMed ID: 16293682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep rhythmicity and homeostasis in mice with targeted disruption of mPeriod genes.
    Shiromani PJ; Xu M; Winston EM; Shiromani SN; Gerashchenko D; Weaver DR
    Am J Physiol Regul Integr Comp Physiol; 2004 Jul; 287(1):R47-57. PubMed ID: 15031135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NPAS2 deletion impairs responses to restricted feeding but not to metabolic challenges.
    Wu X; Wiater MF; Ritter S
    Physiol Behav; 2010 Mar; 99(4):466-71. PubMed ID: 20026146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sleep-wake cycle and motor activity, but not temperature, are disrupted over the light-dark cycle in mice genetically depleted of serotonin.
    Solarewicz JZ; Angoa-Perez M; Kuhn DM; Mateika JH
    Am J Physiol Regul Integr Comp Physiol; 2015 Jan; 308(1):R10-7. PubMed ID: 25394829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep-wake behavior and responses of interleukin-6-deficient mice to sleep deprivation.
    Morrow JD; Opp MR
    Brain Behav Immun; 2005 Jan; 19(1):28-39. PubMed ID: 15581736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.