BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19940118)

  • 1. The process-inducing activity of transmembrane agrin requires follistatin-like domains.
    Porten E; Seliger B; Schneider VA; Wöll S; Stangel D; Ramseger R; Kröger S
    J Biol Chem; 2010 Jan; 285(5):3114-25. PubMed ID: 19940118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative Splicing and the Intracellular Domain Mediate TM-agrin's Ability to Differentially Regulate the Density of Excitatory and Inhibitory Synapse-like Specializations in Developing CNS Neurons.
    Handara G; Kröger S
    Neuroscience; 2019 Nov; 419():60-71. PubMed ID: 31672640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of filopodia-like protrusions by transmembrane agrin: role of agrin glycosaminoglycan chains and Rho-family GTPases.
    Lin L; McCroskery S; Ross JM; Chak Y; Neuhuber B; Daniels MP
    Exp Cell Res; 2010 Aug; 316(14):2260-77. PubMed ID: 20471381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron microscopic structure of agrin and mapping of its binding site in laminin-1.
    Denzer AJ; Schulthess T; Fauser C; Schumacher B; Kammerer RA; Engel J; Ruegg MA
    EMBO J; 1998 Jan; 17(2):335-43. PubMed ID: 9430625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane form agrin-induced process formation requires lipid rafts and the activation of Fyn and MAPK.
    Ramseger R; White R; Kröger S
    J Biol Chem; 2009 Mar; 284(12):7697-705. PubMed ID: 19139104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping sites responsible for interactions of agrin with neurons.
    Burgess RW; Dickman DK; Nunez L; Glass DJ; Sanes JR
    J Neurochem; 2002 Oct; 83(2):271-84. PubMed ID: 12423238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane agrin regulates filopodia in rat hippocampal neurons in culture.
    McCroskery S; Chaudhry A; Lin L; Daniels MP
    Mol Cell Neurosci; 2006 Sep; 33(1):15-28. PubMed ID: 16860570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane agrin regulates dendritic filopodia and synapse formation in mature hippocampal neuron cultures.
    McCroskery S; Bailey A; Lin L; Daniels MP
    Neuroscience; 2009 Sep; 163(1):168-79. PubMed ID: 19524020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An alternative amino-terminus expressed in the central nervous system converts agrin to a type II transmembrane protein.
    Neumann FR; Bittcher G; Annies M; Schumacher B; Kröger S; Ruegg MA
    Mol Cell Neurosci; 2001 Jan; 17(1):208-25. PubMed ID: 11161480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agrin is a chimeric proteoglycan with the attachment sites for heparan sulfate/chondroitin sulfate located in two multiple serine-glycine clusters.
    Winzen U; Cole GJ; Halfter W
    J Biol Chem; 2003 Aug; 278(32):30106-14. PubMed ID: 12773545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An interdomain disulfide bridge links the NtA and first FS domain in agrin.
    McFarlane AA; Stetefeld J
    Protein Sci; 2009 Dec; 18(12):2421-8. PubMed ID: 19845005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering transmembrane-agrin induces filopodia-like processes on axons and dendrites.
    Annies M; Bittcher G; Ramseger R; Löschinger J; Wöll S; Porten E; Abraham C; Rüegg MA; Kröger S
    Mol Cell Neurosci; 2006 Mar; 31(3):515-24. PubMed ID: 16364653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for the juxtamembrane domain of beta-dystroglycan in agrin-induced acetylcholine receptor clustering.
    Kahl J; Campanelli JT
    J Neurosci; 2003 Jan; 23(2):392-402. PubMed ID: 12533599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asparagine of z8 insert is critical for the affinity, conformation, and acetylcholine receptor-clustering activity of neural agrin.
    Tseng CN; Zhang L; Wu SL; Wang WF; Wang ZZ; Cascio M
    J Biol Chem; 2010 Sep; 285(36):27641-51. PubMed ID: 20566625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functions of agrin and agrin-related proteins.
    Patthy L; Nikolics K
    Trends Neurosci; 1993 Feb; 16(2):76-81. PubMed ID: 7680504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neuronal inhibitory domain in the N-terminal half of agrin.
    Bixby JL; Baerwald-De la Torre K; Wang C; Rathjen FG; Rüegg MA
    J Neurobiol; 2002 Feb; 50(2):164-79. PubMed ID: 11793362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium plays a critical role in determining the acetylcholine receptor-clustering activities of alternatively spliced isoforms of Agrin.
    Tseng CN; Zhang L; Cascio M; Wang ZZ
    J Biol Chem; 2003 May; 278(19):17236-45. PubMed ID: 12621054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agrin binds BMP2, BMP4 and TGFbeta1.
    Bányai L; Sonderegger P; Patthy L
    PLoS One; 2010 May; 5(5):e10758. PubMed ID: 20505824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a pair of follistatin-like and EF-hand calcium-binding domains in BM-40.
    Hohenester E; Maurer P; Timpl R
    EMBO J; 1997 Jul; 16(13):3778-86. PubMed ID: 9233787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The COOH-terminal domain of agrin signals via a synaptic receptor in central nervous system neurons.
    Hoover CL; Hilgenberg LG; Smith MA
    J Cell Biol; 2003 Jun; 161(5):923-32. PubMed ID: 12796478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.