BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 19940157)

  • 1. In vivo residue-specific histone methylation dynamics.
    Zee BM; Levin RS; Xu B; LeRoy G; Wingreen NS; Garcia BA
    J Biol Chem; 2010 Jan; 285(5):3341-50. PubMed ID: 19940157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy methyl-SILAC labeling coupled with liquid chromatography and high-resolution mass spectrometry to study the dynamics of site-specific histone methylation.
    Cao XJ; Zee BM; Garcia BA
    Methods Mol Biol; 2013; 977():299-313. PubMed ID: 23436372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic labeling in middle-down proteomics allows for investigation of the dynamics of the histone code.
    Sidoli S; Lu C; Coradin M; Wang X; Karch KR; Ruminowicz C; Garcia BA
    Epigenetics Chromatin; 2017 Jul; 10(1):34. PubMed ID: 28683815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mass spectrometric "Western blot" to evaluate the correlations between histone methylation and histone acetylation.
    Zhang K; Siino JS; Jones PR; Yau PM; Bradbury EM
    Proteomics; 2004 Dec; 4(12):3765-75. PubMed ID: 15378694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum.
    Trelle MB; Salcedo-Amaya AM; Cohen AM; Stunnenberg HG; Jensen ON
    J Proteome Res; 2009 Jul; 8(7):3439-50. PubMed ID: 19351122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptic Peptides Bearing C-Terminal Dimethyllysine Need to Be Considered during the Analysis of Lysine Dimethylation in Proteomic Study.
    Chen M; Zhang M; Zhai L; Hu H; Liu P; Tan M
    J Proteome Res; 2017 Sep; 16(9):3460-3469. PubMed ID: 28730820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue.
    Wisniewski JR; Zougman A; Krüger S; Mann M
    Mol Cell Proteomics; 2007 Jan; 6(1):72-87. PubMed ID: 17043054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous detection of site-specific histone methylations and acetylation assisted by single template oriented molecularly imprinted polymers.
    Zhang T; Zhang W; Liu L; Chen Y
    Analyst; 2020 Feb; 145(4):1376-1383. PubMed ID: 32021994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution is not a strict requirement for characterization and quantification of histone post-translational modifications.
    Karch KR; Zee BM; Garcia BA
    J Proteome Res; 2014 Dec; 13(12):6152-9. PubMed ID: 25325711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3.
    Zheng Y; Sweet SM; Popovic R; Martinez-Garcia E; Tipton JD; Thomas PM; Licht JD; Kelleher NL
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13549-54. PubMed ID: 22869745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of arginine and lysine methylation utilizing peptide separations at neutral pH and electron transfer dissociation mass spectrometry.
    Snijders AP; Hung ML; Wilson SA; Dickman MJ
    J Am Soc Mass Spectrom; 2010 Jan; 21(1):88-96. PubMed ID: 19850496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetrical modification within a nucleosome is not required globally for histone lysine methylation.
    Chen X; Xiong J; Xu M; Chen S; Zhu B
    EMBO Rep; 2011 Mar; 12(3):244-51. PubMed ID: 21331095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometric quantification of histone post-translational modifications by a hybrid chemical labeling method.
    Maile TM; Izrael-Tomasevic A; Cheung T; Guler GD; Tindell C; Masselot A; Liang J; Zhao F; Trojer P; Classon M; Arnott D
    Mol Cell Proteomics; 2015 Apr; 14(4):1148-58. PubMed ID: 25680960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases.
    Collins RE; Tachibana M; Tamaru H; Smith KM; Jia D; Zhang X; Selker EU; Shinkai Y; Cheng X
    J Biol Chem; 2005 Feb; 280(7):5563-70. PubMed ID: 15590646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation.
    Schwämmle V; Sidoli S; Ruminowicz C; Wu X; Lee CF; Helin K; Jensen ON
    Mol Cell Proteomics; 2016 Aug; 15(8):2715-29. PubMed ID: 27302890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC.
    Ong SE; Mittler G; Mann M
    Nat Methods; 2004 Nov; 1(2):119-26. PubMed ID: 15782174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex.
    Zegerman P; Canas B; Pappin D; Kouzarides T
    J Biol Chem; 2002 Apr; 277(14):11621-4. PubMed ID: 11850414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Proteomic Analysis of Protein Methylation in Prokaryotes and Eukaryotes Revealed Distinct Substrate Specificity.
    Zhang M; Xu JY; Hu H; Ye BC; Tan M
    Proteomics; 2018 Jan; 18(1):. PubMed ID: 29150981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry.
    Pesavento JJ; Bullock CR; LeDuc RD; Mizzen CA; Kelleher NL
    J Biol Chem; 2008 May; 283(22):14927-37. PubMed ID: 18381279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying in vivo, site-specific changes in protein methylation with SILAC.
    Lau HT; Lewis KA; Ong SE
    Methods Mol Biol; 2014; 1188():161-75. PubMed ID: 25059611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.