These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 19940245)

  • 21. A chaperone network for the resolubilization of protein aggregates: direct interaction of ClpB and DnaK.
    Schlee S; Beinker P; Akhrymuk A; Reinstein J
    J Mol Biol; 2004 Feb; 336(1):275-85. PubMed ID: 14741222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ClpB dynamics is driven by its ATPase cycle and regulated by the DnaK system and substrate proteins.
    Aguado A; Fernández-Higuero JA; Cabrera Y; Moro F; Muga A
    Biochem J; 2015 Mar; 466(3):561-70. PubMed ID: 25558912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fusion protein analysis reveals the precise regulation between Hsp70 and Hsp100 during protein disaggregation.
    Hayashi S; Nakazaki Y; Kagii K; Imamura H; Watanabe YH
    Sci Rep; 2017 Aug; 7(1):8648. PubMed ID: 28819163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions within the ClpB/DnaK bi-chaperone system from Escherichia coli.
    Kedzierska S; Chesnokova LS; Witt SN; Zolkiewski M
    Arch Biochem Biophys; 2005 Dec; 444(1):61-5. PubMed ID: 16289019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK.
    Mogk A; Schlieker C; Friedrich KL; Schönfeld HJ; Vierling E; Bukau B
    J Biol Chem; 2003 Aug; 278(33):31033-42. PubMed ID: 12788951
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of Hsp104/ClpB inhibition by prion curing Guanidinium hydrochloride.
    Kummer E; Oguchi Y; Seyffer F; Bukau B; Mogk A
    FEBS Lett; 2013 Mar; 587(6):810-7. PubMed ID: 23416293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conserved amino acid residues within the amino-terminal domain of ClpB are essential for the chaperone activity.
    Liu Z; Tek V; Akoev V; Zolkiewski M
    J Mol Biol; 2002 Aug; 321(1):111-20. PubMed ID: 12139937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation.
    Carroni M; Kummer E; Oguchi Y; Wendler P; Clare DK; Sinning I; Kopp J; Mogk A; Bukau B; Saibil HR
    Elife; 2014 Apr; 3():e02481. PubMed ID: 24843029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem.
    Aguado A; Fernández-Higuero JA; Moro F; Muga A
    Arch Biochem Biophys; 2015 Aug; 580():121-34. PubMed ID: 26159839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Poly-L-lysine enhances the protein disaggregation activity of ClpB.
    Strub C; Schlieker C; Bukau B; Mogk A
    FEBS Lett; 2003 Oct; 553(1-2):125-30. PubMed ID: 14550559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli.
    Zolkiewski M
    J Biol Chem; 1999 Oct; 274(40):28083-6. PubMed ID: 10497158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel insights into the mechanism of chaperone-assisted protein disaggregation.
    Weibezahn J; Schlieker C; Tessarz P; Mogk A; Bukau B
    Biol Chem; 2005 Aug; 386(8):739-44. PubMed ID: 16201868
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of co-overproduction of DnaK/DnaJ/GrpE and ClpB proteins on the removal of heat-aggregated proteins from Escherichia coli DeltaclpB mutant cells--new insight into the role of Hsp70 in a functional cooperation with Hsp100.
    Kedzierska S; Matuszewska E
    FEMS Microbiol Lett; 2001 Nov; 204(2):355-60. PubMed ID: 11731148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible connection of the N-terminal domain in ClpB modulates substrate binding and the aggregate reactivation efficiency.
    Zhang T; Ploetz EA; Nagy M; Doyle SM; Wickner S; Smith PE; Zolkiewski M
    Proteins; 2012 Dec; 80(12):2758-68. PubMed ID: 22890624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleotide utilization requirements that render ClpB active as a chaperone.
    del Castillo U; Fernández-Higuero JA; Pérez-Acebrón S; Moro F; Muga A
    FEBS Lett; 2010 Mar; 584(5):929-34. PubMed ID: 20085762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Operational plasticity enables hsp104 to disaggregate diverse amyloid and nonamyloid clients.
    DeSantis ME; Leung EH; Sweeny EA; Jackrel ME; Cushman-Nick M; Neuhaus-Follini A; Vashist S; Sochor MA; Knight MN; Shorter J
    Cell; 2012 Nov; 151(4):778-793. PubMed ID: 23141537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repurposing p97 inhibitors for chemical modulation of the bacterial ClpB-DnaK bichaperone system.
    Glaza P; Ranaweera CB; Shiva S; Roy A; Geisbrecht BV; Schoenen FJ; Zolkiewski M
    J Biol Chem; 2021; 296():100079. PubMed ID: 33187983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation.
    Mogk A; Deuerling E; Vorderwülbecke S; Vierling E; Bukau B
    Mol Microbiol; 2003 Oct; 50(2):585-95. PubMed ID: 14617181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The M-domain controls Hsp104 protein remodeling activity in an Hsp70/Hsp40-dependent manner.
    Sielaff B; Tsai FT
    J Mol Biol; 2010 Sep; 402(1):30-7. PubMed ID: 20654624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104.
    Lum R; Tkach JM; Vierling E; Glover JR
    J Biol Chem; 2004 Jul; 279(28):29139-46. PubMed ID: 15128736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.