These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 19940252)
1. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Ballhorn U; Siegert F; Mason M; Limin S Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21213-8. PubMed ID: 19940252 [TBL] [Abstract][Full Text] [Related]
2. The amount of carbon released from peat and forest fires in Indonesia during 1997. Page SE; Siegert F; Rieley JO; Boehm HD; Jaya A; Limin S Nature; 2002 Nov; 420(6911):61-5. PubMed ID: 12422213 [TBL] [Abstract][Full Text] [Related]
3. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Hirano T; Kusin K; Limin S; Osaki M Glob Chang Biol; 2014 Feb; 20(2):555-65. PubMed ID: 23775585 [TBL] [Abstract][Full Text] [Related]
5. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Gaveau DL; Salim MA; Hergoualc'h K; Locatelli B; Sloan S; Wooster M; Marlier ME; Molidena E; Yaen H; DeFries R; Verchot L; Murdiyarso D; Nasi R; Holmgren P; Sheil D Sci Rep; 2014 Aug; 4():6112. PubMed ID: 25135165 [TBL] [Abstract][Full Text] [Related]
6. Spatial evaluation of Indonesia's 2015 fire-affected area and estimated carbon emissions using Sentinel-1. Lohberger S; Stängel M; Atwood EC; Siegert F Glob Chang Biol; 2018 Feb; 24(2):644-654. PubMed ID: 28746734 [TBL] [Abstract][Full Text] [Related]
7. Monitoring emissions from the 2015 Indonesian fires using CO satellite data. Nechita-Banda N; Krol M; van der Werf GR; Kaiser JW; Pandey S; Huijnen V; Clerbaux C; Coheur P; Deeter MN; Röckmann T Philos Trans R Soc Lond B Biol Sci; 2018 Oct; 373(1760):. PubMed ID: 30297466 [TBL] [Abstract][Full Text] [Related]
8. In the line of fire: the peatlands of Southeast Asia. Page SE; Hooijer A Philos Trans R Soc Lond B Biol Sci; 2016 Jun; 371(1696):. PubMed ID: 27216508 [TBL] [Abstract][Full Text] [Related]
9. Carbon emissions from South-East Asian peatlands will increase despite emission-reduction schemes. Wijedasa LS; Sloan S; Page SE; Clements GR; Lupascu M; Evans TA Glob Chang Biol; 2018 Oct; 24(10):4598-4613. PubMed ID: 29855120 [TBL] [Abstract][Full Text] [Related]
10. Climate regulation of fire emissions and deforestation in equatorial Asia. van der Werf GR; Dempewolf J; Trigg SN; Randerson JT; Kasibhatla PS; Giglio L; Murdiyarso D; Peters W; Morton DC; Collatz GJ; Dolman AJ; DeFries RS Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20350-5. PubMed ID: 19075224 [TBL] [Abstract][Full Text] [Related]
11. Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires. Miettinen J; Shi C; Liew SC Environ Manage; 2017 Oct; 60(4):747-757. PubMed ID: 28674917 [TBL] [Abstract][Full Text] [Related]
12. Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Wiggins EB; Czimczik CI; Santos GM; Chen Y; Xu X; Holden SR; Randerson JT; Harvey CF; Kai FM; Yu LE Proc Natl Acad Sci U S A; 2018 Dec; 115(49):12419-12424. PubMed ID: 30455288 [TBL] [Abstract][Full Text] [Related]
13. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird). Atwood EC; Englhart S; Lorenz E; Halle W; Wiedemann W; Siegert F PLoS One; 2016; 11(8):e0159410. PubMed ID: 27486664 [TBL] [Abstract][Full Text] [Related]
14. Spatial distribution of degradation and deforestation of palm swamp peatlands and associated carbon emissions in the Peruvian Amazon. Marcus MS; Hergoualc'h K; Honorio Coronado EN; Gutiérrez-Vélez VH J Environ Manage; 2024 Feb; 351():119665. PubMed ID: 38086114 [TBL] [Abstract][Full Text] [Related]
15. Sea level rise and climate change acting as interactive stressors on development and dynamics of tropical peatlands in coastal Sumatra and South Borneo since the Last Glacial Maximum. Hapsari KA; Jennerjahn T; Nugroho SH; Yulianto E; Behling H Glob Chang Biol; 2022 May; 28(10):3459-3479. PubMed ID: 35312144 [TBL] [Abstract][Full Text] [Related]
16. The health impacts of Indonesian peatland fires. Hein L; Spadaro JV; Ostro B; Hammer M; Sumarga E; Salmayenti R; Boer R; Tata H; Atmoko D; Castañeda JP Environ Health; 2022 Jul; 21(1):62. PubMed ID: 35790967 [TBL] [Abstract][Full Text] [Related]
17. The air quality of Palangka Raya, Central Kalimantan, Indonesia: The impacts of forest fires on visibility. Santoso M; Hopke PK; Damastuti E; Lestiani DD; Kurniawati S; Kusmartini I; Prakoso D; Kumalasari D; Riadi A J Air Waste Manag Assoc; 2022 Nov; 72(11):1191-1200. PubMed ID: 35583524 [TBL] [Abstract][Full Text] [Related]
18. Top-Down Estimation of Particulate Matter Emissions from Extreme Tropical Peatland Fires Using Geostationary Satellite Fire Radiative Power Observations. Fisher D; Wooster MJ; Xu W; Thomas G; Lestari P Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322056 [TBL] [Abstract][Full Text] [Related]
19. Building capacity for estimating fire emissions from tropical peatlands; a worked example from Indonesia. Krisnawati H; Volkova L; Budiharto B; Zamzani F; Adinugroho WC; Qirom MA; Weston CJ Sci Rep; 2023 Sep; 13(1):14355. PubMed ID: 37658110 [TBL] [Abstract][Full Text] [Related]
20. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Field RD; van der Werf GR; Fanin T; Fetzer EJ; Fuller R; Jethva H; Levy R; Livesey NJ; Luo M; Torres O; Worden HM Proc Natl Acad Sci U S A; 2016 Aug; 113(33):9204-9. PubMed ID: 27482096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]