These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Conformational and thermodynamic properties of supercoiled DNA. Vologodskii AV; Cozzarelli NR Annu Rev Biophys Biomol Struct; 1994; 23():609-43. PubMed ID: 7919794 [TBL] [Abstract][Full Text] [Related]
3. The influence of salt on the structure and energetics of supercoiled DNA. Schlick T; Li B; Olson WK Biophys J; 1994 Dec; 67(6):2146-66. PubMed ID: 7696459 [TBL] [Abstract][Full Text] [Related]
4. Conformational and thermodynamic properties of supercoiled DNA. Vologodskii AV; Levene SD; Klenin KV; Frank-Kamenetskii M; Cozzarelli NR J Mol Biol; 1992 Oct; 227(4):1224-43. PubMed ID: 1433295 [TBL] [Abstract][Full Text] [Related]
5. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo. Bednar J; Furrer P; Stasiak A; Dubochet J; Egelman EH; Bates AD J Mol Biol; 1994 Jan; 235(3):825-47. PubMed ID: 8289322 [TBL] [Abstract][Full Text] [Related]
8. Effects of Na+ and Mg2+ on the structures of supercoiled DNAs: comparison of simulations with experiments. Gebe JA; Delrow JJ; Heath PJ; Fujimoto BS; Stewart DW; Schurr JM J Mol Biol; 1996 Sep; 262(2):105-28. PubMed ID: 8831783 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamics of long supercoiled molecules: insights from highly efficient Monte Carlo simulations. Lepage T; Képès F; Junier I Biophys J; 2015 Jul; 109(1):135-43. PubMed ID: 26153710 [TBL] [Abstract][Full Text] [Related]
11. The effect of ionic conditions on the conformations of supercoiled DNA. II. Equilibrium catenation. Rybenkov VV; Vologodskii AV; Cozzarelli NR J Mol Biol; 1997 Mar; 267(2):312-23. PubMed ID: 9096228 [TBL] [Abstract][Full Text] [Related]
12. Conformational response of supercoiled DNA to confinement in a nanochannel. Lim W; Ng SY; Lee C; Feng YP; van der Maarel JR J Chem Phys; 2008 Oct; 129(16):165102. PubMed ID: 19045317 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo simulations of locally melted supercoiled DNAs in 20 mM ionic strength. Sucato CA; Rangel DP; Aspleaf D; Fujimoto BS; Schurr JM Biophys J; 2004 May; 86(5):3079-96. PubMed ID: 15111422 [TBL] [Abstract][Full Text] [Related]
14. Supercoiled DNA energetics and dynamics by computer simulation. Schlick T; Olson WK J Mol Biol; 1992 Feb; 223(4):1089-119. PubMed ID: 1538391 [TBL] [Abstract][Full Text] [Related]
15. Approach to Monte Carlo calculation of the buckling of supercoiled DNA loops. Zhang Y Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):R5923-6. PubMed ID: 11102016 [TBL] [Abstract][Full Text] [Related]
16. Modulation of intramolecular interactions in superhelical DNA by curved sequences: a Monte Carlo simulation study. Klenin KV; Frank-Kamenetskii MD; Langowski J Biophys J; 1995 Jan; 68(1):81-8. PubMed ID: 7711271 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of site juxtaposition in supercoiled DNA. Huang J; Schlick T; Vologodskii A Proc Natl Acad Sci U S A; 2001 Jan; 98(3):968-73. PubMed ID: 11158579 [TBL] [Abstract][Full Text] [Related]
18. Monte Carlo simulations of supercoiled DNAs confined to a plane. Fujimoto BS; Schurr JM Biophys J; 2002 Feb; 82(2):944-62. PubMed ID: 11806935 [TBL] [Abstract][Full Text] [Related]
19. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models. Liu Z; Chan HS J Chem Phys; 2008 Apr; 128(14):145104. PubMed ID: 18412482 [TBL] [Abstract][Full Text] [Related]
20. The effect of ionic conditions on the conformations of supercoiled DNA. I. Sedimentation analysis. Rybenkov VV; Vologodskii AV; Cozzarelli NR J Mol Biol; 1997 Mar; 267(2):299-311. PubMed ID: 9096227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]