BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 19940342)

  • 1. Computational modelling of blood-flow-induced changes in blood electrical conductivity and its contribution to the impedance cardiogram.
    Trakic A; Akhand M; Wang H; Mason D; Liu F; Wilson S; Crozier S
    Physiol Meas; 2010 Jan; 31(1):13-33. PubMed ID: 19940342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiography.
    Wang Y; Haynor DR; Kim Y
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1390-401. PubMed ID: 11759920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple sources of the impedance cardiogram based on 3-D finite difference human thorax models.
    Wang L; Patterson R
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):141-8. PubMed ID: 7868141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of thoracic blood volume changes during the heart cycle with electrical impedance using a linear spot-electrode array.
    Hoetink AE; Faes TJ; Marcus JT; Kerkkamp HJ; Heethaar RM
    IEEE Trans Med Imaging; 2002 Jun; 21(6):653-61. PubMed ID: 12166862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The measurement of cardia output by the thoracic impedance method.
    Adamicza A; Tutsek L; Nagy S
    Acta Physiol Hung; 1988; 71(3):395-408. PubMed ID: 3421117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation.
    Gaw RL; Cornish BH; Thomas BJ
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):721-7. PubMed ID: 18270009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of electrode configurations for measuring cardiac tissue conductivities and fibre rotation.
    Johnston BM; Johnston PR; Kilpatrick D
    Ann Biomed Eng; 2006 Jun; 34(6):986-96. PubMed ID: 16783654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of physiological sources on the impedance cardiogram analyzed using 4D FEM simulations.
    Ulbrich M; Mühlsteff J; Leonhardt S; Walter M
    Physiol Meas; 2014 Jul; 35(7):1451-68. PubMed ID: 24901446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomically constrained electrical impedance tomography for three-dimensional anisotropic bodies.
    Glidewell ME; Ng KT
    IEEE Trans Med Imaging; 1997 Oct; 16(5):572-80. PubMed ID: 9368112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric field plethysmography signals of the human thorax as determined by a 2-D FE-model.
    Nopp P; Pfützner H; Bögl K; Nakesch H; Ruhsam C
    Med Prog Technol; 1995-1996; 21(3):135-45. PubMed ID: 8776710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution of the lungs to thoracic impedance measurements: a simulation study based on a high resolution finite difference model.
    Yang F; Patterson RP
    Physiol Meas; 2007 Jul; 28(7):S153-61. PubMed ID: 17664633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced-current electrical impedance tomography: a 2-D theoretical simulation.
    Zlochiver S; Rosenfeld M; Abboud S
    IEEE Trans Med Imaging; 2003 Dec; 22(12):1550-60. PubMed ID: 14649745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the formation for thoracic impedance change.
    Kuang MX; Xiao QJ; Cui CY; Kuang NZ; Hong WQ; Hu AR
    Ann Biomed Eng; 2010 Mar; 38(3):1007-16. PubMed ID: 20336823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of blood-flow-induced conductivity changes to measured impedance.
    Wtorek J; Poliński A
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):41-9. PubMed ID: 15651563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite element model for radiofrequency ablation of the myocardium.
    Shahidi AV; Savard P
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):963-8. PubMed ID: 7959803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart.
    Sundnes J; Lines GT; Mardal KA; Tveito A
    Comput Methods Biomech Biomed Engin; 2002 Dec; 5(6):397-409. PubMed ID: 12468421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach to the determination of cardiac potential distributions: application to the analysis of electrode configurations.
    Johnston BM; Johnston PR; Kilpatrick D
    Math Biosci; 2006 Aug; 202(2):288-309. PubMed ID: 16797036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impedance imaging of lung ventilation: do we need to account for chest expansion?
    Adler A; Guardo R; Berthiaume Y
    IEEE Trans Biomed Eng; 1996 Apr; 43(4):414-20. PubMed ID: 8626190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examination of impedance cardiography properties--FEM model studies.
    Wtorek J; Poliński A
    Biomed Sci Instrum; 1995; 31():77-82. PubMed ID: 7654988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso.
    Sundnes J; Lines GT; Tveito A
    Math Biosci; 2005 Apr; 194(2):233-48. PubMed ID: 15854678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.