These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 19940342)

  • 61. Estimation of cardiac bidomain parameters from extracellular measurement: two dimensional study.
    Sadleir R; Henriquez C
    Ann Biomed Eng; 2006 Aug; 34(8):1289-303. PubMed ID: 16804743
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Thoracic geometry and its relation to electrical current distribution: consequences for electrode placement in electrical impedance cardiography.
    Raaijmakers E; Faes TJ; Goovaerts HG; Meijer JH; de Vries PM; Heethaar RM
    Med Biol Eng Comput; 1998 Sep; 36(5):592-7. PubMed ID: 10367443
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In situ electric fields causing electro-stimulation from conductor contact of charged human.
    Nagai T; Hirata A
    Radiat Prot Dosimetry; 2010 Aug; 140(4):351-6. PubMed ID: 20382974
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A solution method for the determination of cardiac potential distributions with an alternating current source.
    Johnston BM; Johnston PR; Kilpatrick D
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):223-33. PubMed ID: 18568820
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Thoracic impedance change equation deduced on the basis of parallel impedance model and Ohm's law.
    Qiu-Jin X; Zhen W; Ming-Xing K; Ping W; Pei L; Jian-Feng J
    Med Phys; 2012 Feb; 39(2):1042-5. PubMed ID: 22320814
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Relations between components of impedance cardiogram analyzed by means of finite element model and sensitivity theorem.
    Wtorek J
    Ann Biomed Eng; 2000; 28(11):1352-61. PubMed ID: 11212953
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Applicability of the two-compartment coaxial cylindrical model for ambulatory measuring of cardiac output with spot-electrodes].
    Song Y; Gao S; Ikrashi A; Yamakoshi K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):684-91. PubMed ID: 24059037
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optimal tissue types in the thoracic electrical impedance model for thoracic electrical bioimpedance (TEB) studies.
    Akhand M; Trakic A; Terril P; Liu F; Wilson S; Crozier S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3913-6. PubMed ID: 19964319
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Contributions to the impedance cardiogram waveform.
    Kosicki J; Chen LH; Hobbie R; Patterson R; Ackerman E
    Ann Biomed Eng; 1986; 14(1):67-80. PubMed ID: 3706856
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Descending aortic flow contribution to intrathoracic impedance-development and preliminary testing of a dual impedance model.
    Baker AB; McLeod CN; Roxburgh AJ; Bannister P
    J Clin Monit Comput; 2008 Feb; 22(1):11-22. PubMed ID: 18004667
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Localisation of cardiac related impedance changes in the thorax.
    Eyüboğlu BM; Brown BH; Barber DC; Seagar AD
    Clin Phys Physiol Meas; 1987; 8 Suppl A():167-73. PubMed ID: 3568566
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Estimation of the bidomain conductivity parameters of cardiac tissue from extracellular potential distributions initiated by point stimulation.
    Graham LS; Kilpatrick D
    Ann Biomed Eng; 2010 Dec; 38(12):3630-48. PubMed ID: 20628818
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Improving agreement between thoracic bioimpedance and dye dilution cardiac output estimation in children.
    O'Connell AJ; Tibballs J; Coulthard M
    Anaesth Intensive Care; 1991 Aug; 19(3):434-40. PubMed ID: 1767916
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sources of the thoracic cardiogenic electrical impedance signal as determined by a model.
    Patterson RP
    Med Biol Eng Comput; 1985 Sep; 23(5):411-7. PubMed ID: 4068776
    [No Abstract]   [Full Text] [Related]  

  • 75. An optimal spot-electrodes array for electrical impedance cardiography through determination of impedance mapping of a regional area along the medial line on the thorax.
    Ikarashi A; Nogawa M; Yamakoshi T; Tanaka S; Yamakoshi K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3202-5. PubMed ID: 17947015
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The feasibility of transoesophageal bioimpedance measurements for the detection of heart graft rejection.
    Giovinazzo G; Ribas N; Cinca J; Rosell-Ferrer J
    Physiol Meas; 2011 Jul; 32(7):867-76. PubMed ID: 21646700
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Do mathematical model studies settle the controversy on the origin of cardiac synchronous trans-thoracic electrical impedance variations? A systematic review.
    de Sitter A; Verdaasdonk RM; Faes TJ
    Physiol Meas; 2016 Sep; 37(9):R88-R108. PubMed ID: 27531544
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Patient-specific simulations and measurements of the magneto-hemodynamic effect in human primary vessels.
    Kyriakou A; Neufeld E; Szczerba D; Kainz W; Luechinger R; Kozerke S; McGregor R; Kuster N
    Physiol Meas; 2012 Feb; 33(2):117-30. PubMed ID: 22227810
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A realistic model for the analysis of heart magnetic stimulation.
    Pastore AP; De Leo A; De Leo R; Chiara GD; Primiani VM; Moglie F; Cerri G
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):291-300. PubMed ID: 20699204
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Influence of magnetically-induced E-fields on cardiac electric activity during MRI: A modeling study.
    Liu F; Xia L; Crozier S
    Magn Reson Med; 2003 Dec; 50(6):1180-8. PubMed ID: 14648565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.