BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 1994036)

  • 1. Three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel (Americanus americanus) and herring (Clupea harengus) bone.
    Lee DD; Glimcher MJ
    J Mol Biol; 1991 Feb; 217(3):487-501. PubMed ID: 1994036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium-phosphate crystals of pickerel and herring fish bone.
    Lee DD; Glimcher MJ
    Connect Tissue Res; 1989; 21(1-4):247-57. PubMed ID: 2605949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.
    Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF
    J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early mineral deposition in calcifying tendon characterized by high voltage electron microscopy and three-dimensional graphic imaging.
    Landis WJ; Song MJ
    J Struct Biol; 1991 Oct; 107(2):116-27. PubMed ID: 1807348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.
    Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF
    Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and chemical characteristics and maturation of the calcium-phosphate crystals formed during the calcification of the organic matrix synthesized by chicken osteoblasts in cell culture.
    Rey C; Kim HM; Gerstenfeld L; Glimcher MJ
    J Bone Miner Res; 1995 Oct; 10(10):1577-88. PubMed ID: 8686515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral packing of mineral crystals in bone collagen fibrils.
    Burger C; Zhou HW; Wang H; Sics I; Hsiao BS; Chu B; Graham L; Glimcher MJ
    Biophys J; 2008 Aug; 95(4):1985-92. PubMed ID: 18359799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The primary calcification in bones follows removal of decorin and fusion of collagen fibrils.
    Hoshi K; Kemmotsu S; Takeuchi Y; Amizuka N; Ozawa H
    J Bone Miner Res; 1999 Feb; 14(2):273-80. PubMed ID: 9933482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural analysis of bone calcification by using energy-filtering transmission electron microscopy.
    Hoshi K; Ejiri S; Ozawa H
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):141-50. PubMed ID: 11729949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphogenesis of calcification in porcine bioprosthesis: insight from high resolution electron microscopic investigation at molecular and atomic resolution.
    Lee YS
    J Electron Microsc (Tokyo); 1993 Jun; 42(3):156-65. PubMed ID: 8397272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MV-mimicking micelles loaded with PEG-serine-ACP nanoparticles to achieve biomimetic intra/extra fibrillar mineralization of collagen in vitro.
    Shen M; Lin M; Zhu M; Zhang W; Lu D; Liu H; Deng J; Que K; Zhang X
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):167-181. PubMed ID: 30312770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays.
    Mahamid J; Aichmayer B; Shimoni E; Ziblat R; Li C; Siegel S; Paris O; Fratzl P; Weiner S; Addadi L
    Proc Natl Acad Sci U S A; 2010 Apr; 107(14):6316-21. PubMed ID: 20308589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vectorial sequence of mineralization in the turkey leg tendon determined by electron microscopic imaging.
    Arsenault AL; Frankland BW; Ottensmeyer FP
    Calcif Tissue Int; 1991 Jan; 48(1):46-55. PubMed ID: 2007226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging.
    Landis WJ; Hodgens KJ; Song MJ; Arena J; Kiyonaga S; Marko M; Owen C; McEwen BF
    J Struct Biol; 1996; 117(1):24-35. PubMed ID: 8776885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.
    Landis WJ
    Scan Electron Microsc; 1979; (2):555-70. PubMed ID: 524025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure analysis of collagen fibril at atomic-level resolution and its implications for intra-fibrillar transport in bone biomineralization.
    Xu Z; Zhao W; Wang Z; Yang Y; Sahai N
    Phys Chem Chem Phys; 2018 Jan; 20(3):1513-1523. PubMed ID: 29260165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative determination of the mineral distribution in different collagen zones of calcifying tendon using high voltage electron microscopic tomography.
    McEwen BF; Song MJ; Landis WJ
    J Comput Assist Microsc; 1991; 3(4):201-10. PubMed ID: 11537967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure of the organic matrix of embryonic avian bone after en bloc reaction with various electron-dense 'stains'.
    Bonucci E; Silvestrini G
    Acta Anat (Basel); 1996; 156(1):22-33. PubMed ID: 8960295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Microscopic aspects on biomineralization in bone].
    Amizuka N; Hasegawa T; Yamamoto T; Oda K
    Clin Calcium; 2014 Feb; 24(2):203-14. PubMed ID: 24473353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.