BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19940550)

  • 21. VEGF inhibitors in renal cell carcinoma.
    Vachhani P; George S
    Clin Adv Hematol Oncol; 2016 Dec; 14(12):1016-1028. PubMed ID: 28212363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the importance of smart drugs in renal cell carcinoma.
    Patard JJ; Rioux-Leclercq N; Fergelot P
    Eur Urol; 2006 Apr; 49(4):633-43. PubMed ID: 16481093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. VEGF-targeted therapy in metastatic renal cell carcinoma.
    Rini BI
    Oncologist; 2005 Mar; 10(3):191-7. PubMed ID: 15793222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas.
    Wiesener MS; Münchenhagen PM; Berger I; Morgan NV; Roigas J; Schwiertz A; Jürgensen JS; Gruber G; Maxwell PH; Löning SA; Frei U; Maher ER; Gröne HJ; Eckardt KU
    Cancer Res; 2001 Jul; 61(13):5215-22. PubMed ID: 11431362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The current role of angiogenesis inhibitors in the treatment of renal cell carcinoma.
    Choueiri TK; Bukowski RM; Rini BI
    Semin Oncol; 2006 Oct; 33(5):596-606. PubMed ID: 17045089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blockade of the vascular endothelial growth factor-receptor 2 pathway inhibits the growth of human renal cell carcinoma, RBM1-IT4, in the kidney but not in the bone of nude mice.
    Karashima T; Inoue K; Fukata S; Iiyama T; Kurabayashi A; Kawada C; Shuin T
    Int J Oncol; 2007 Apr; 30(4):937-45. PubMed ID: 17332933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy.
    Clark PE
    Kidney Int; 2009 Nov; 76(9):939-45. PubMed ID: 19657325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pleiotropic action of renal cell carcinoma-dysregulated miRNAs on hypoxia-related signaling pathways.
    Lichner Z; Mejia-Guerrero S; Ignacak M; Krizova A; Bao TT; Girgis AH; Youssef YM; Yousef GM
    Am J Pathol; 2012 Apr; 180(4):1675-87. PubMed ID: 22326755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From oxygen sensing to angiogenesis: Targeting the hypoxia signaling pathway in metastatic kidney cancer.
    Chung C
    Am J Health Syst Pharm; 2020 Dec; 77(24):2064-2073. PubMed ID: 33016992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Up-regulation of hypoxia-inducible factor 2alpha in renal cell carcinoma associated with loss of Tsc-2 tumor suppressor gene.
    Liu MY; Poellinger L; Walker CL
    Cancer Res; 2003 May; 63(10):2675-80. PubMed ID: 12750296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation.
    Turner KJ; Moore JW; Jones A; Taylor CF; Cuthbert-Heavens D; Han C; Leek RD; Gatter KC; Maxwell PH; Ratcliffe PJ; Cranston D; Harris AL
    Cancer Res; 2002 May; 62(10):2957-61. PubMed ID: 12019178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting von Hippel-Lindau pathway in renal cell carcinoma.
    Patel PH; Chadalavada RS; Chaganti RS; Motzer RJ
    Clin Cancer Res; 2006 Dec; 12(24):7215-20. PubMed ID: 17189392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting vascular endothelial growth factor (VEGF)-receptor-signaling in renal cell carcinoma.
    Reuter CW; Morgan MA; Grünwald V; Herrmann TR; Burchardt M; Ganser A
    World J Urol; 2007 Mar; 25(1):59-72. PubMed ID: 17340158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pathobiology, prognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway.
    Pantuck AJ; Zeng G; Belldegrun AS; Figlin RA
    Clin Cancer Res; 2003 Oct; 9(13):4641-52. PubMed ID: 14581333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vascular endothelial growth factor overexpression is correlated with von Hippel-Lindau tumor suppressor gene inactivation in patients with sporadic renal cell carcinoma.
    Igarashi H; Esumi M; Ishida H; Okada K
    Cancer; 2002 Jul; 95(1):47-53. PubMed ID: 12115316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regression of solid tumors by engineered overexpression of von Hippel-Lindau tumor suppressor protein and antisense hypoxia-inducible factor-1alpha.
    Sun X; Kanwar JR; Leung E; Vale M; Krissansen GW
    Gene Ther; 2003 Dec; 10(25):2081-9. PubMed ID: 14595381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of hypoxia-inducible factor 1alpha, hypoxia-inducible factor 2alpha, and von Hippel-Lindau protein in epithelial ovarian neoplasms and allelic loss of von Hippel-Lindau gene: nuclear expression of hypoxia-inducible factor 1alpha is an independent prognostic factor in ovarian carcinoma.
    Osada R; Horiuchi A; Kikuchi N; Yoshida J; Hayashi A; Ota M; Katsuyama Y; Melillo G; Konishi I
    Hum Pathol; 2007 Sep; 38(9):1310-20. PubMed ID: 17555795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Building on a foundation of VEGF and mTOR targeted agents in renal cell carcinoma.
    Flaherty KT; Puzanov I
    Biochem Pharmacol; 2010 Sep; 80(5):638-46. PubMed ID: 20382128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. VHL and HIF signalling in renal cell carcinogenesis.
    Baldewijns MM; van Vlodrop IJ; Vermeulen PB; Soetekouw PM; van Engeland M; de Bruïne AP
    J Pathol; 2010 Jun; 221(2):125-38. PubMed ID: 20225241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Renal cell carcinoma].
    Tomita Y
    Gan To Kagaku Ryoho; 2014 Feb; 41(2):172-7. PubMed ID: 24743196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.