BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 199407)

  • 1. Cyclic adenosine 3',5'-monophosphate, adenylate cyclase and physical dependence on ethanol: studies with tranylcypromine.
    Shen A; Ansky AJ; Smith T; Pathman D; Thurman RG
    Drug Alcohol Depend; 1977; 2(5-6):431-40. PubMed ID: 199407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol-induced changes in activities of adenylate cyclase, guanylate cyclase and cyclic adenosine 3',5'-monophosphate dependent protein kinase in the brain and liver.
    Kuriyama K
    Drug Alcohol Depend; 1977; 2(5-6):335-48. PubMed ID: 21064
    [No Abstract]   [Full Text] [Related]  

  • 3. Chronic in vivo ethanol administration alters the sensitivity of adenylate cyclase coupling in homogenates of rat brain.
    Saffey K; Gillman MA; Cantrill RC
    Neurosci Lett; 1988 Feb; 84(3):317-22. PubMed ID: 3352958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chronic ethanol ingestion on the cyclic AMP system of the upper gastrointestinal tract in the rat.
    Seitz HK; Simon B; Czygan P; Veith S; Kommerell B
    Alcohol Clin Exp Res; 1983; 7(4):369-71. PubMed ID: 6318589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct effects of chronic ethanol exposure on beta-adrenergic and adenosine-sensitive adenylate cyclase activities and cyclic AMP content in primary cerebellar cultures.
    Rabin RA
    J Neurochem; 1990 Jul; 55(1):122-8. PubMed ID: 2162374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of thuringiensin on adenylate cyclase in rat cerebral cortex.
    Tsai SF; Yang C; Wang SC; Wang JS; Hwang JS; Ho SP
    Toxicol Appl Pharmacol; 2004 Jan; 194(1):34-40. PubMed ID: 14728977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine-sensitive adenylate cyclase in homogenates of rat striata during ethanol and barbiturate withdrawal.
    Seeber U; Kuschinsky K
    Arch Toxicol; 1976 Aug; 35(4):247-53. PubMed ID: 989295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethanol alters the adenosine receptor-Ni-mediated adenylate cyclase inhibitory response in rat brain cortex in vitro.
    Bauché F; Bourdeaux-Jaubert AM; Giudicelli Y; Nordmann R
    FEBS Lett; 1987 Jul; 219(2):296-300. PubMed ID: 3111884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of rat brain adenylate cyclase to activation by calcium and ethanol after chronic exposure to ethanol.
    von Hungen K; Baxter CF
    Biochem Biophys Res Commun; 1982 Jun; 106(3):1078-82. PubMed ID: 7202359
    [No Abstract]   [Full Text] [Related]  

  • 10. Colonic cyclic AMP metabolism following chronic ethanol consumption in the rat: effect of hormonal secretagogues.
    Seitz HK; Simon B; Czygan P; Kommerell B
    Pharmacol Biochem Behav; 1983; 18 Suppl 1():337-40. PubMed ID: 6314379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of cyclic AMP generating system in rat cerebral cortical slices during chronic ethanol treatment and withdrawal.
    Smith TL; Jacobyansky A; Shen A; Pathman D; Thurman RG
    Neuropharmacology; 1981 Jan; 20(1):67-72. PubMed ID: 6261183
    [No Abstract]   [Full Text] [Related]  

  • 12. Chronic MAO A and MAO B inhibition decreases the 5-HT1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase.
    Sleight AJ; Marsden CA; Palfreyman MG; Mir AK; Lovenberg W
    Eur J Pharmacol; 1988 Sep; 154(3):255-61. PubMed ID: 3234480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by beta-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex.
    Rosenberg PA; Li Y
    Brain Res; 1995 Sep; 692(1-2):227-32. PubMed ID: 8548307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic AMP and beta-adrenergic receptors during the development of physical dependence on ethanol in the rat.
    Thurman RG; Harden TK; Winn K
    Adv Exp Med Biol; 1980; 126():145-55. PubMed ID: 6250327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of acute methadone withdrawal on prostaglandin E-stimulated 3H-cyclic adenosine monophosphate accumulation in human platelets.
    Pandey GN; DeLeon-Jones FA; Inwang EE; Davis JM
    Clin Pharmacol Ther; 1980 May; 27(5):607-11. PubMed ID: 6245830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuation of cyclic AMP production by carbamazepine.
    Chen G; Pan B; Hawver DB; Wright CB; Potter WZ; Manji HK
    J Neurochem; 1996 Nov; 67(5):2079-86. PubMed ID: 8863517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that the presynaptic A2a-adenosine receptor of the rat motor nerve endings is positively coupled to adenylate cyclase.
    Correia-de-Sá P; Ribeiro JA
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Nov; 350(5):514-22. PubMed ID: 7870191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ethanol on the cyclic AMP system in rat brain.
    Volicer L; Mirin R; Gold BI
    J Stud Alcohol; 1977 Jan; 38(1):11-24. PubMed ID: 189135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of chronic ethanol exposure on adenylate cyclase activities in the rat.
    Rabin RA; Baker RC; Deitrich RA
    Pharmacol Biochem Behav; 1987 Apr; 26(4):693-7. PubMed ID: 3037566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of selective monoamine oxidase inhibition by clorgyline and deprenyl on the norepinephrine receptor-coupled adenylate cyclase system in rat cortex.
    Mishra R; Gillespie DD; Youdim MB; Sulser F
    Psychopharmacology (Berl); 1983; 81(3):220-3. PubMed ID: 6316394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.