These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 19940918)

  • 1. Structure and hydration of membranes embedded with voltage-sensing domains.
    Krepkiy D; Mihailescu M; Freites JA; Schow EV; Worcester DL; Gawrisch K; Tobias DJ; White SH; Swartz KJ
    Nature; 2009 Nov; 462(7272):473-9. PubMed ID: 19940918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural interactions between lipids, water and S1-S4 voltage-sensing domains.
    Krepkiy D; Gawrisch K; Swartz KJ
    J Mol Biol; 2012 Nov; 423(4):632-47. PubMed ID: 22858867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does a voltage sensor interact with a lipid bilayer? Simulations of a potassium channel domain.
    Sands ZA; Sansom MS
    Structure; 2007 Feb; 15(2):235-44. PubMed ID: 17292841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural dynamics of the S4 voltage-sensor helix in lipid bilayers lacking phosphate groups.
    Andersson M; Freites JA; Tobias DJ; White SH
    J Phys Chem B; 2011 Jul; 115(27):8732-8. PubMed ID: 21692541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational heterogeneity of the voltage sensor loop of KvAP in micelles and membranes: A fluorescence approach.
    Das A; Raghuraman H
    Biochim Biophys Acta Biomembr; 2021 May; 1863(5):183568. PubMed ID: 33529577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural biology: Highly charged meetings.
    Lee AG
    Nature; 2009 Nov; 462(7272):420-1. PubMed ID: 19940907
    [No Abstract]   [Full Text] [Related]  

  • 7. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement.
    Chanda B; Asamoah OK; Blunck R; Roux B; Bezanilla F
    Nature; 2005 Aug; 436(7052):852-6. PubMed ID: 16094369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous transmembrane segment S4 of the voltage sensor domain partitions into the lipid membrane.
    Tiriveedhi V; Miller M; Butko P; Li M
    Biochim Biophys Acta; 2012 Jul; 1818(7):1698-705. PubMed ID: 22465069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of the voltage-sensor domain and voltage-gated K+-channel proteins vectorially oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry.
    Gupta S; Dura JA; Freites JA; Tobias DJ; Blasie JK
    Langmuir; 2012 Jul; 28(28):10504-20. PubMed ID: 22686684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly charged voltage-sensor helix spontaneously translocates across membranes.
    He J; Hristova K; Wimley WC
    Angew Chem Int Ed Engl; 2012 Jul; 51(29):7150-3. PubMed ID: 22696138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-gated ion channel modulation by lipids: insights from molecular dynamics simulations.
    Kasimova MA; Tarek M; Shaytan AK; Shaitan KV; Delemotte L
    Biochim Biophys Acta; 2014 May; 1838(5):1322-31. PubMed ID: 24513257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shaping the water crevice to accommodate the voltage sensor in a down conformation: a molecular dynamics simulation study.
    Kitjaruwankul S; Boonamnaj P; Fuklang S; Supunyabut C; Sompornpisut P
    J Phys Chem B; 2015 Jun; 119(22):6516-24. PubMed ID: 25973957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Resolved Neutron Interferometry and the Mechanism of Electromechanical Coupling in Voltage-Gated Ion Channels.
    Blasie JK
    Methods Enzymol; 2018; 603():67-90. PubMed ID: 29673535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.
    Schow EV; Freites JA; Nizkorodov A; White SH; Tobias DJ
    Biochim Biophys Acta; 2012 Jul; 1818(7):1726-36. PubMed ID: 22425907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the membrane-aqueous border for the voltage-sensing domain of a potassium channel.
    Neale EJ; Rong H; Cockcroft CJ; Sivaprasadarao A
    J Biol Chem; 2007 Dec; 282(52):37597-604. PubMed ID: 17951256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of Kv channel voltage sensor helix in a lipid membrane with applied electric field.
    Nishizawa M; Nishizawa K
    Biophys J; 2008 Aug; 95(4):1729-44. PubMed ID: 18487312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer.
    Cuello LG; Cortes DM; Perozo E
    Science; 2004 Oct; 306(5695):491-5. PubMed ID: 15486302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vstx1, a modifier of Kv channel gating, localizes to the interfacial region of lipid bilayers.
    Bemporad D; Sands ZA; Wee CL; Grottesi A; Sansom MS
    Biochemistry; 2006 Oct; 45(39):11844-55. PubMed ID: 17002285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations.
    Bond PJ; Sansom MS
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2631-6. PubMed ID: 17301243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Down-state model of the voltage-sensing domain of a potassium channel.
    Schow EV; Freites JA; Gogna K; White SH; Tobias DJ
    Biophys J; 2010 Jun; 98(12):2857-66. PubMed ID: 20550898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.