These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 19940939)
1. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Nadeem SM; Zahir ZA; Naveed M; Arshad M Can J Microbiol; 2009 Nov; 55(11):1302-9. PubMed ID: 19940939 [TBL] [Abstract][Full Text] [Related]
2. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Nadeem SM; Zahir ZA; Naveed M; Arshad M Can J Microbiol; 2007 Oct; 53(10):1141-9. PubMed ID: 18026206 [TBL] [Abstract][Full Text] [Related]
3. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Shaharoona B; Arshad M; Zahir ZA Lett Appl Microbiol; 2006 Feb; 42(2):155-9. PubMed ID: 16441381 [TBL] [Abstract][Full Text] [Related]
4. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Ahmad M; Zahir ZA; Asghar HN; Asghar M Can J Microbiol; 2011 Jul; 57(7):578-89. PubMed ID: 21770816 [TBL] [Abstract][Full Text] [Related]
5. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Saleem M; Arshad M; Hussain S; Bhatti AS J Ind Microbiol Biotechnol; 2007 Oct; 34(10):635-48. PubMed ID: 17665234 [TBL] [Abstract][Full Text] [Related]
6. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Hassan W; Bano R; Bashir F; David J Environ Sci Pollut Res Int; 2014 Sep; 21(18):10983-96. PubMed ID: 24888619 [TBL] [Abstract][Full Text] [Related]
7. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Zahir ZA; Ghani U; Naveed M; Nadeem SM; Asghar HN Arch Microbiol; 2009 May; 191(5):415-24. PubMed ID: 19255743 [TBL] [Abstract][Full Text] [Related]
8. Growth-promoting bacteria and arbuscular mycorrhizal fungus enhance maize tolerance to saline stress. de Carvalho Neta SJ; Araújo VLVP; Fracetto FJC; da Silva CCG; de Souza ER; Silva WR; Lumini E; Fracetto GGM Microbiol Res; 2024 Jul; 284():127708. PubMed ID: 38599021 [TBL] [Abstract][Full Text] [Related]
10. Bacteria in combination with fertilizers promote root and shoot growth of maize in saline-sodic soil. Zafar-Ul-Hye M; Farooq HM; Hussain M Braz J Microbiol; 2015 Mar; 46(1):97-102. PubMed ID: 26221093 [TBL] [Abstract][Full Text] [Related]
11. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Dey R; Pal KK; Bhatt DM; Chauhan SM Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384 [TBL] [Abstract][Full Text] [Related]
12. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. Zahir ZA; Munir A; Asghar HN; Shaharoona B; Arshad M J Microbiol Biotechnol; 2008 May; 18(5):958-63. PubMed ID: 18633298 [TBL] [Abstract][Full Text] [Related]
13. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Shaharoona B; Naveed M; Arshad M; Zahir ZA Appl Microbiol Biotechnol; 2008 May; 79(1):147-55. PubMed ID: 18340443 [TBL] [Abstract][Full Text] [Related]
14. Growth response of maize plantlets inoculated with Enterobacter spp., as a model for alternative agriculture. Morales-García YE; Juárez-Hernández D; Aragón-Hernández C; Mascarua-Esparza MA; Bustillos-Cristales MR; Fuentes-Ramírez LE; Martinez-Contreras RD; Munoz-Rojas J Rev Argent Microbiol; 2011; 43(4):287-93. PubMed ID: 22274827 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Selected Plant Growth-Promoting Rhizobacteria and Their Non-Host Growth Promotion Effects. Fan D; Smith DL Microbiol Spectr; 2021 Sep; 9(1):e0027921. PubMed ID: 34190589 [TBL] [Abstract][Full Text] [Related]
16. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. Danish S; Zafar-Ul-Hye M; Mohsin F; Hussain M PLoS One; 2020; 15(4):e0230615. PubMed ID: 32251430 [TBL] [Abstract][Full Text] [Related]
17. Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. Nadeem SM; Ahmad M; Tufail MA; Asghar HN; Nazli F; Zahir ZA Physiol Plant; 2021 Jun; 172(2):463-476. PubMed ID: 32949405 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. Liu J; Tang L; Gao H; Zhang M; Guo C J Sci Food Agric; 2019 Jan; 99(1):281-289. PubMed ID: 29855046 [TBL] [Abstract][Full Text] [Related]
19. 1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 Facilitates the Growth of Rice in the Presence of Salt or Heavy Metals. Han Y; Wang R; Yang Z; Zhan Y; Ma Y; Ping S; Zhang L; Lin M; Yan Y J Microbiol Biotechnol; 2015 Jul; 25(7):1119-28. PubMed ID: 25674802 [TBL] [Abstract][Full Text] [Related]
20. Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Misra S; Dixit VK; Khan MH; Kumar Mishra S; Dviwedi G; Yadav S; Lehri A; Singh Chauhan P Microbiol Res; 2017 Dec; 205():25-34. PubMed ID: 28942841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]