These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19941307)

  • 1. Impact of the transcriptional regulator, Ace2, on the Candida glabrata secretome.
    Stead DA; Walker J; Holcombe L; Gibbs SR; Yin Z; Selway L; Butler G; Brown AJ; Haynes K
    Proteomics; 2010 Jan; 10(2):212-23. PubMed ID: 19941307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic changes associated with inactivation of the Candida glabrata ACE2 virulence-moderating gene.
    Stead D; Findon H; Yin Z; Walker J; Selway L; Cash P; Dujon BA; Hennequin C; Brown AJ; Haynes K
    Proteomics; 2005 May; 5(7):1838-48. PubMed ID: 15825152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of transcription factor gene ACE2 in the fungal pathogen Candida glabrata results in hypervirulence.
    Kamran M; Calcagno AM; Findon H; Bignell E; Jones MD; Warn P; Hopkins P; Denning DW; Butler G; Rogers T; Mühlschlegel FA; Haynes K
    Eukaryot Cell; 2004 Apr; 3(2):546-52. PubMed ID: 15075283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different consequences of ACE2 and SWI5 gene disruptions for virulence of pathogenic and nonpathogenic yeasts.
    MacCallum DM; Findon H; Kenny CC; Butler G; Haynes K; Odds FC
    Infect Immun; 2006 Sep; 74(9):5244-8. PubMed ID: 16926418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential virulence of Candida glabrata glycosylation mutants.
    West L; Lowman DW; Mora-Montes HM; Grubb S; Murdoch C; Thornhill MH; Gow NA; Williams D; Haynes K
    J Biol Chem; 2013 Jul; 288(30):22006-18. PubMed ID: 23720756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing Candida glabrata biofilm matrix proteome: global characterization and pH response.
    Gonçalves B; Azevedo N; Osório H; Henriques M; Silva S
    Biochem J; 2021 Feb; 478(4):961-974. PubMed ID: 33555340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata.
    Weig M; Jänsch L; Gross U; De Koster CG; Klis FM; De Groot PW
    Microbiology (Reading); 2004 Oct; 150(Pt 10):3129-44. PubMed ID: 15470094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential incorporation of adhesins.
    Gómez-Molero E; de Boer AD; Dekker HL; Moreno-Martínez A; Kraneveld EA; Ichsan ; Chauhan N; Weig M; de Soet JJ; de Koster CG; Bader O; de Groot PW
    FEMS Yeast Res; 2015 Dec; 15(8):. PubMed ID: 26546455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of
    Yu SJ; Chang YL; Chen YL
    Antimicrob Agents Chemother; 2018 Mar; 62(3):. PubMed ID: 29311082
    [No Abstract]   [Full Text] [Related]  

  • 10. Global Secretome Characterization of the Pathogenic Yeast
    Rasheed M; Kumar N; Kaur R
    J Proteome Res; 2020 Jan; 19(1):49-63. PubMed ID: 31621333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors.
    Roetzer A; Gregori C; Jennings AM; Quintin J; Ferrandon D; Butler G; Kuchler K; Ammerer G; Schüller C
    Mol Microbiol; 2008 Aug; 69(3):603-20. PubMed ID: 18547390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation.
    Calcagno AM; Bignell E; Warn P; Jones MD; Denning DW; Mühlschlegel FA; Rogers TR; Haynes K
    Mol Microbiol; 2003 Nov; 50(4):1309-18. PubMed ID: 14622417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages.
    Seider K; Gerwien F; Kasper L; Allert S; Brunke S; Jablonowski N; Schwarzmüller T; Barz D; Rupp S; Kuchler K; Hube B
    Eukaryot Cell; 2014 Jan; 13(1):170-83. PubMed ID: 24363366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the Slt2 mitogen-activated protein kinase pathway in cell wall integrity and virulence in Candida glabrata.
    Miyazaki T; Inamine T; Yamauchi S; Nagayoshi Y; Saijo T; Izumikawa K; Seki M; Kakeya H; Yamamoto Y; Yanagihara K; Miyazaki Y; Kohno S
    FEMS Yeast Res; 2010 May; 10(3):343-52. PubMed ID: 20214686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins.
    de Groot PW; Kraneveld EA; Yin QY; Dekker HL; Gross U; Crielaard W; de Koster CG; Bader O; Klis FM; Weig M
    Eukaryot Cell; 2008 Nov; 7(11):1951-64. PubMed ID: 18806209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane Proteome-Wide Response to the Antifungal Drug Clotrimazole in Candida glabrata: Role of the Transcription Factor CgPdr1 and the Drug:H+ Antiporters CgTpo1_1 and CgTpo1_2.
    Pais P; Costa C; Pires C; Shimizu K; Chibana H; Teixeira MC
    Mol Cell Proteomics; 2016 Jan; 15(1):57-72. PubMed ID: 26512119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the essentiality of ROM2 genes in the pathogenic yeasts Candida glabrata and Candida albicans using temperature-sensitive mutants.
    Kanno T; Takekawa D; Miyakawa Y
    J Appl Microbiol; 2015 Apr; 118(4):851-63. PubMed ID: 25604069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
    Vermitsky JP; Earhart KD; Smith WL; Homayouni R; Edlind TD; Rogers PD
    Mol Microbiol; 2006 Aug; 61(3):704-22. PubMed ID: 16803598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The glycosylphosphatidylinositol-linked aspartyl protease Yps1 is transcriptionally regulated by the calcineurin-Crz1 and Slt2 MAPK pathways in Candida glabrata.
    Miyazaki T; Izumikawa K; Yamauchi S; Inamine T; Nagayoshi Y; Saijo T; Seki M; Kakeya H; Yamamoto Y; Yanagihara K; Miyazaki Y; Yasuoka A; Kohno S
    FEMS Yeast Res; 2011 Aug; 11(5):449-56. PubMed ID: 21501380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans.
    Yadav AK; Desai PR; Rai MN; Kaur R; Ganesan K; Bachhawat AK
    Microbiology (Reading); 2011 Feb; 157(Pt 2):484-495. PubMed ID: 20966090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.