BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19941342)

  • 1. Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen production.
    Saratale GD; Saratale RG; Lo YC; Chang JS
    Biotechnol Prog; 2010; 26(2):406-16. PubMed ID: 19941342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biohydrogen production from cellulosic hydrolysate produced via temperature-shift-enhanced bacterial cellulose hydrolysis.
    Lo YC; Su YC; Chen CY; Chen WM; Lee KS; Chang JS
    Bioresour Technol; 2009 Dec; 100(23):5802-7. PubMed ID: 19604692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5.
    Lo YC; Lu WC; Chen CY; Chang JS
    Bioresour Technol; 2010 Aug; 101(15):5885-91. PubMed ID: 20385486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Studies on immobilized cellobiase].
    Shen XL; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):236-9. PubMed ID: 15966329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of cellulases and xylanases by Cellulomonas flavigena grown on different carbon sources.
    Sánchez-Herrera LM; Ramos-Valdivia AC; de la Torre M; Salgado LM; Ponce-Noyola T
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):589-95. PubMed ID: 17899068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation.
    Rai PK; Singh SP; Asthana RK; Singh S
    Bioresour Technol; 2014; 152():140-6. PubMed ID: 24291314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU.
    Saratale GD; Oh SE
    Biodegradation; 2011 Sep; 22(5):905-19. PubMed ID: 21234649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic of improved production and carboxymethyl cellulose hydrolysis by an endo-glucanase from a derepressed mutant of Cellulomonas biazotea.
    Rajoka MI; Ashraf Y; Khalid AM
    Biotechnol Lett; 2004 Sep; 26(17):1329-33. PubMed ID: 15604759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic saccharification of sugar cane bagasse by continuous xylanase and cellulase production from cellulomonas flavigena PR-22.
    Rojas-Rejón ÓA; Poggi-Varaldo HM; Ramos-Valdivia AC; Ponce-Noyola T; Cristiani-Urbina E; Martínez A; de la Torre M
    Biotechnol Prog; 2016 Mar; 32(2):321-6. PubMed ID: 26701152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy.
    Lo YC; Bai MD; Chen WM; Chang JS
    Bioresour Technol; 2008 Nov; 99(17):8299-303. PubMed ID: 18417341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic degradation of steam-pretreated Lespedeza stalk (Lespedeza crytobotrya) by cellulosic-substrate induced cellulases.
    Feng Y; Liu HQ; Xu F; Jiang JX
    Bioprocess Biosyst Eng; 2011 Mar; 34(3):357-65. PubMed ID: 21153422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and action patterns of two beta-1,4-glucanases purified from cellulomonas uda CS1-1.
    Yoon MH; Choi WY
    J Microbiol Biotechnol; 2007 Aug; 17(8):1291-9. PubMed ID: 18051597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic Analysis of the Secretome of Cellulomonas fimi ATCC 484 and Cellulomonas flavigena ATCC 482.
    Wakarchuk WW; Brochu D; Foote S; Robotham A; Saxena H; Erak T; Kelly J
    PLoS One; 2016; 11(3):e0151186. PubMed ID: 26950732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis.
    de Almeida MN; Guimarães VM; Bischoff KM; Falkoski DL; Pereira OL; Gonçalves DS; de Rezende ST
    Appl Biochem Biotechnol; 2011 Sep; 165(2):594-610. PubMed ID: 21573756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.
    Saratale GD; Kshirsagar SD; Sampange VT; Saratale RG; Oh SE; Govindwar SP; Oh MK
    Appl Biochem Biotechnol; 2014 Dec; 174(8):2801-17. PubMed ID: 25374139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The family II carbohydrate-binding module of xylanase CflXyn11A from Cellulomonas flavigena increases the synergy with cellulase TrCel7B from Trichoderma reesei during the hydrolysis of sugar cane bagasse.
    Pavón-Orozco P; Santiago-Hernández A; Rosengren A; Hidalgo-Lara ME; Stålbrand H
    Bioresour Technol; 2012 Jan; 104():622-30. PubMed ID: 22169213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production.
    Cheng CL; Chang JS
    Bioresour Technol; 2011 Sep; 102(18):8628-34. PubMed ID: 21481585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase.
    Singh R; Varma AJ; Seeta Laxman R; Rao M
    Bioresour Technol; 2009 Dec; 100(24):6679-81. PubMed ID: 19683917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of two sugarcane bagasse-absorbable thermophilic xylanases from the mesophilic Cellulomonas flavigena.
    Santiago-Hernández A; Vega-Estrada J; del Carmen Montes-Horcasitas M; Hidalgo-Lara ME
    J Ind Microbiol Biotechnol; 2007 Apr; 34(4):331-8. PubMed ID: 17219190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor.
    Wei D; Liu X; Yang ST
    Bioresour Technol; 2013 Feb; 129():553-60. PubMed ID: 23270719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.