These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19941342)

  • 21. Simultaneous production of cellulase and reducing sugar through modification of compositional and structural characteristic of sugarcane bagasse.
    Yoon LW; Ngoh GC; Chua AS
    Enzyme Microb Technol; 2013 Sep; 53(4):250-6. PubMed ID: 23931690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct fermentation of xylan by Clostridium strain BOH3 for the production of butanol and hydrogen using optimized culture medium.
    Rajagopalan G; He J; Yang KL
    Bioresour Technol; 2014 Feb; 154():38-43. PubMed ID: 24380824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and characterization of two novel β-glucosidase genes encoding isoenzymes of the cellobiase complex from Cellulomonas biazotea.
    Chan AKN; Ng AKL; Ng KKY; Wong WKR
    Gene; 2018 Feb; 642():367-375. PubMed ID: 29155329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies.
    Li J; Zhou P; Liu H; Xiong C; Lin J; Xiao W; Gong Y; Liu Z
    Bioresour Technol; 2014 Mar; 155():258-65. PubMed ID: 24457310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic hydrolysis of filter paper by recombinant cellulase cocktails leveraging a key cellobiase, Cba2, of
    Siddique F; Hon Lam EK; Raymond Wong WK
    Front Bioeng Biotechnol; 2022; 10():990984. PubMed ID: 36246366
    [No Abstract]   [Full Text] [Related]  

  • 26. Beta-methyl-xyloside: positive effect on xylanase induction in Cellulomonas flavigena.
    Hidalgo-Lara ME; Farrés GS; Montes-Horcasitas Mdel C
    J Ind Microbiol Biotechnol; 2005 Aug; 32(8):345-8. PubMed ID: 15986227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct ethanol production from cellulosic materials by Zymobacter palmae carrying Cellulomonas endoglucanase and Ruminococcus β-glucosidase genes.
    Kojima M; Okamoto K; Yanase H
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):5137-47. PubMed ID: 23604558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis.
    de Castro AM; de Albuquerque de Carvalho ML; Leite SG; Pereira N
    J Ind Microbiol Biotechnol; 2010 Feb; 37(2):151-8. PubMed ID: 19902281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ethanol production from xylan-removed sugarcane bagasse using low loading of commercial cellulase.
    Li J; Zhou P; Liu H; Wu K; Xiao W; Gong Y; Lin J; Liu Z
    Bioresour Technol; 2014 Jul; 163():390-4. PubMed ID: 24841492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Convergent evolution of processivity in bacterial and fungal cellulases.
    Uchiyama T; Uchihashi T; Nakamura A; Watanabe H; Kaneko S; Samejima M; Igarashi K
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19896-19903. PubMed ID: 32747547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellulose and xylan degrading enzymes in Thecotheus pelletieri.
    Pardo AG; Obertello M; Forchiassin F
    Rev Argent Microbiol; 2000; 32(4):190-5. PubMed ID: 11149150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellulolytic and xylanolytic enzymes from thermophilic Aspergillus terreus RWY.
    Sharma R; Kocher GS; Bhogal RS; Oberoi HS
    J Basic Microbiol; 2014 Dec; 54(12):1367-77. PubMed ID: 25047723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO3.
    Tian QQ; Liang L; Zhu MJ
    Bioresour Technol; 2015 Dec; 197():422-8. PubMed ID: 26356113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the cellulase-secretome produced by the Antarctic bacterium Flavobacterium sp. AUG42.
    Herrera LM; Braña V; Franco Fraguas L; Castro-Sowinski S
    Microbiol Res; 2019; 223-225():13-21. PubMed ID: 31178046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1.
    Lo YC; Huang CY; Cheng CL; Lin CY; Chang JS
    Bioresour Technol; 2011 Sep; 102(18):8384-92. PubMed ID: 21489783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe
    Reddy K; Nasr M; Kumari S; Kumar S; Gupta SK; Enitan AM; Bux F
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8790-8804. PubMed ID: 28213710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrolyzability of xylan after adsorption on cellulose: Exploration of xylan limitation on enzymatic hydrolysis of cellulose.
    Wang X; Li K; Yang M; Zhang J
    Carbohydr Polym; 2016 Sep; 148():362-70. PubMed ID: 27185150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced production of cellulases byCellulomonas strains grown on different cellulosic residues.
    Rajoka MI; Malik KA
    Folia Microbiol (Praha); 1997 Feb; 42(1):59-64. PubMed ID: 18454328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass.
    Matano Y; Hasunuma T; Kondo A
    Bioresour Technol; 2012 Mar; 108():128-33. PubMed ID: 22265982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomically Defined Paenibacillus polymyxa ND24 for Efficient Cellulase Production Utilizing Sugarcane Bagasse as a Substrate.
    Bohra V; Tikariha H; Dafale NA
    Appl Biochem Biotechnol; 2019 Jan; 187(1):266-281. PubMed ID: 29926286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.