BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19941446)

  • 21. The potential for treatment of skeletal muscle disorders with adipose-derived stem cells.
    Mizuno H
    Curr Stem Cell Res Ther; 2010 Jun; 5(2):133-6. PubMed ID: 19941455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insulin producing cells generation by overexpression of miR-375 in adipose-derived mesenchymal stem cells from diabetic patients.
    Piran M; Enderami SE; Piran M; Sedeh HS; Seyedjafari E; Ardeshirylajimi A
    Biologicals; 2017 Mar; 46():23-28. PubMed ID: 28017506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Periodontal disease and periodontal tissue regeneration.
    Tobita M; Mizuno H
    Curr Stem Cell Res Ther; 2010 Jun; 5(2):168-74. PubMed ID: 19941449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concise review: in search of unlimited sources of functional human pancreatic beta cells.
    Scharfmann R; Rachdi L; Ravassard P
    Stem Cells Transl Med; 2013 Jan; 2(1):61-7. PubMed ID: 23283495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Allogeneic diabetic mesenchymal stem cells transplantation in streptozotocin-induced diabetic rat.
    Dong QY; Chen L; Gao GQ; Wang L; Song J; Chen B; Xu YX; Sun L
    Clin Invest Med; 2008 Dec; 31(6):E328-37. PubMed ID: 19032902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adipose Tissue From Type 1 Diabetes Mellitus Patients Can Be Used to Generate Insulin-Producing Cells.
    Ikemoto T; Tokuda K; Wada Y; Gao L; Miyazaki K; Yamada S; Saito Y; Imura S; Morine Y; Shimada M
    Pancreas; 2020 Oct; 49(9):1225-1231. PubMed ID: 32898009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generation of Insulin-Producing Cells From Human-Induced Pluripotent Stem Cells Using a Stepwise Differentiation Protocol Optimized With Platelet-Rich Plasma.
    Enderami SE; Mortazavi Y; Soleimani M; Nadri S; Biglari A; Mansour RN
    J Cell Physiol; 2017 Oct; 232(10):2878-2886. PubMed ID: 27925205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adipose tissue regeneration.
    Brayfield CA; Marra KG; Rubin JP
    Curr Stem Cell Res Ther; 2010 Jun; 5(2):116-21. PubMed ID: 19941458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved differentiation of human adipose stem cells to insulin-producing β-like cells using PDFGR kinase inhibitor Tyrphostin9.
    Mandal P; De D; Yun K; Kim KK
    Biochem Biophys Res Commun; 2020 Nov; 533(1):132-138. PubMed ID: 32933751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generating insulin-producing cells for diabetic therapy: existing strategies and new development.
    Shen J; Cheng Y; Han Q; Mu Y; Han W
    Ageing Res Rev; 2013 Mar; 12(2):469-78. PubMed ID: 23318683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stem cells and pancreatic differentiation in vitro.
    Blyszczuk P; Wobus AM
    J Biotechnol; 2004 Sep; 113(1-3):3-13. PubMed ID: 15380643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Culture of iPSCs Derived Pancreatic
    Wan J; Huang Y; Zhou P; Guo Y; Wu C; Zhu S; Wang Y; Wang L; Lu Y; Wang Z
    Biomed Res Int; 2017; 2017():4276928. PubMed ID: 28480220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters.
    Shaer A; Azarpira N; Vahdati A; Karimi MH; Shariati M
    Exp Clin Transplant; 2015 Feb; 13(1):68-75. PubMed ID: 24417176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regenerative medicine for diabetes: differentiation of human pluripotent stem cells into functional β-cells in vitro and their proposed journey to clinical translation.
    Bose B; Katikireddy KR; Shenoy PS
    Vitam Horm; 2014; 95():223-48. PubMed ID: 24559920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Present and future cell therapies for pancreatic beta cell replenishment.
    Domínguez-Bendala J; Ricordi C
    World J Gastroenterol; 2012 Dec; 18(47):6876-84. PubMed ID: 23322984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone marrow-derived mesenchymal stem cells co-cultured with pancreatic islets display β cell plasticity.
    Karaoz E; Ayhan S; Okçu A; Aksoy A; Bayazıt G; Osman Gürol A; Duruksu G
    J Tissue Eng Regen Med; 2011 Jun; 5(6):491-500. PubMed ID: 21604384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells.
    Gabr MM; Zakaria MM; Refaie AF; Abdel-Rahman EA; Reda AM; Ali SS; Khater SM; Ashamallah SA; Ismail AM; Ismail HEA; El-Badri N; Ghoneim MA
    Biomed Res Int; 2017; 2017():3854232. PubMed ID: 28584815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From substitution of insulin to replacement of insulin producing cells: New therapeutic opportunities from research on pancreas development and stem cell differentiation.
    Zulewski H
    Best Pract Res Clin Endocrinol Metab; 2015 Dec; 29(6):815-20. PubMed ID: 26696511
    [No Abstract]   [Full Text] [Related]  

  • 39. Glucose-stimulated insulin secretion of various mesenchymal stem cells after insulin-producing cell differentiation.
    Kim SJ; Choi YS; Ko ES; Lim SM; Lee CW; Kim DI
    J Biosci Bioeng; 2012 Jun; 113(6):771-7. PubMed ID: 22425523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adipose tissue-derived mesenchymal stem cells exert in vitro immunomodulatory and beta cell protective functions in streptozotocin-induced diabetic mice model.
    Rahavi H; Hashemi SM; Soleimani M; Mohammadi J; Tajik N
    J Diabetes Res; 2015; 2015():878535. PubMed ID: 25893202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.