BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 19941446)

  • 41. Efficient generation of functional pancreatic β-cells from human induced pluripotent stem cells.
    Yabe SG; Fukuda S; Takeda F; Nashiro K; Shimoda M; Okochi H
    J Diabetes; 2017 Feb; 9(2):168-179. PubMed ID: 27038181
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cornea and ocular surface treatment.
    De Miguel MP; Alio JL; Arnalich-Montiel F; Fuentes-Julian S; de Benito-Llopis L; Amparo F; Bataille L
    Curr Stem Cell Res Ther; 2010 Jun; 5(2):195-204. PubMed ID: 19941445
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advances in the Generation of Functional β-cells from Induced Pluripotent Stem Cells As a Cure for Diabetes Mellitus.
    Kalra K; Chandrabose ST; Ramasamy TS; Kasim NHBA
    Curr Drug Targets; 2018; 19(13):1463-1477. PubMed ID: 29874998
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using stem cells to produce insulin.
    Soria B; Gauthier BR; Martín F; Tejedo JR; Bedoya FJ; Rojas A; Hmadcha A
    Expert Opin Biol Ther; 2015; 15(10):1469-89. PubMed ID: 26156425
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice.
    Kajiyama H; Hamazaki TS; Tokuhara M; Masui S; Okabayashi K; Ohnuma K; Yabe S; Yasuda K; Ishiura S; Okochi H; Asashima M
    Int J Dev Biol; 2010; 54(4):699-705. PubMed ID: 19757377
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differentiation of human adipose tissue-derived stem cells into aggregates of insulin-producing cells through the overexpression of pancreatic and duodenal homeobox gene-1.
    Lee J; Kim SC; Kim SJ; Lee H; Jung EJ; Jung SH; Han DJ
    Cell Transplant; 2013; 22(6):1053-60. PubMed ID: 23031216
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation.
    Karnieli O; Izhar-Prato Y; Bulvik S; Efrat S
    Stem Cells; 2007 Nov; 25(11):2837-44. PubMed ID: 17615265
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Progress in treating diabetes mellitus with adult stem cells].
    Zhang L; Teng C; An T
    Sheng Wu Gong Cheng Xue Bao; 2008 Feb; 24(2):177-82. PubMed ID: 18464596
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Towards a Functional Cure for Diabetes Using Stem Cell-Derived Beta Cells: Are We There Yet?
    Bourgeois S; Sawatani T; Van Mulders A; De Leu N; Heremans Y; Heimberg H; Cnop M; Staels W
    Cells; 2021 Jan; 10(1):. PubMed ID: 33477961
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue.
    Xu L; Liu Y; Sun Y; Wang B; Xiong Y; Lin W; Wei Q; Wang H; He W; Wang B; Li G
    Stem Cell Res Ther; 2017 Dec; 8(1):275. PubMed ID: 29208029
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diabetes mellitus: a potential target for stem cell therapy.
    Burns CJ; Persaud SJ; Jones PM
    Curr Stem Cell Res Ther; 2006 May; 1(2):255-66. PubMed ID: 18220871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stem cell applications in diabetes.
    Noguchi H
    J Stem Cells; 2012; 7(4):229-44. PubMed ID: 24196798
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro.
    Sun Y; Chen L; Hou XG; Hou WK; Dong JJ; Sun L; Tang KX; Wang B; Song J; Li H; Wang KX
    Chin Med J (Engl); 2007 May; 120(9):771-6. PubMed ID: 17531117
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis.
    Kuhn NZ; Tuan RS
    J Cell Physiol; 2010 Feb; 222(2):268-77. PubMed ID: 19847802
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: viable therapy for type III.C. a diabetes mellitus.
    Thakkar UG; Vanikar AV; Trivedi HL
    Biomed J; 2013; 36(6):304-7. PubMed ID: 24385073
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional differentiation of bone marrow-derived mesenchymal stem cells into insulin-producing cells.
    Khorsandi L; Nejad-Dehbashi F; Ahangarpour A; Hashemitabar M
    Tissue Cell; 2015 Feb; 47(1):66-72. PubMed ID: 25554603
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of a small molecule that facilitates the differentiation of human iPSCs/ESCs and mouse embryonic pancreatic explants into pancreatic endocrine cells.
    Kondo Y; Toyoda T; Ito R; Funato M; Hosokawa Y; Matsui S; Sudo T; Nakamura M; Okada C; Zhuang X; Watanabe A; Ohta A; Inagaki N; Osafune K
    Diabetologia; 2017 Aug; 60(8):1454-1466. PubMed ID: 28534195
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell differentiation: therapeutical challenges in diabetes.
    Roche E; Vicente-Salar N; Arribas M; Paredes B
    J Stem Cells; 2012; 7(4):211-28. PubMed ID: 24196797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bone marrow mesenchymal stem cells ameliorate inflammatory factor-induced dysfunction of INS-1 cells on chip.
    Sun Y; Yao Z; Lin P; Hou X; Chen L
    Cell Biol Int; 2014 May; 38(5):647-54. PubMed ID: 24449503
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differentiation of Wharton's jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells.
    Wu LF; Wang NN; Liu YS; Wei X
    Tissue Eng Part A; 2009 Oct; 15(10):2865-73. PubMed ID: 19257811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.