BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19941852)

  • 1. Dynamic regulation of GSH synthesis and uptake pathways in the rat lens epithelium.
    Li B; Li L; Donaldson PJ; Lim JC
    Exp Eye Res; 2010 Feb; 90(2):300-7. PubMed ID: 19941852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of glutathione uptake, synthesis, and efflux pathways in the epithelium and endothelium of the rat cornea.
    Li B; Lee MS; Lee RS; Donaldson PJ; Lim JC
    Cornea; 2012 Nov; 31(11):1304-12. PubMed ID: 22314823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium.
    Kannan R; Yi JR; Tang D; Zlokovic BV; Kaplowitz N
    Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2269-75. PubMed ID: 8843923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping of glutathione and its precursor amino acids reveals a role for GLYT2 in glycine uptake in the lens core.
    Lim J; Li L; Jacobs MD; Kistler J; Donaldson PJ
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5142-51. PubMed ID: 17962467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular identification and characterisation of the glycine transporter (GLYT1) and the glutamine/glutamate transporter (ASCT2) in the rat lens.
    Lim J; Lorentzen KA; Kistler J; Donaldson PJ
    Exp Eye Res; 2006 Aug; 83(2):447-55. PubMed ID: 16635486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low de novo glutathione synthesis from circulating sulfur amino acids in the lens epithelium.
    Mackic JB; Kannan R; Kaplowitz N; Zlokovic BV
    Exp Eye Res; 1997 Apr; 64(4):615-26. PubMed ID: 9227280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of the cystine/glutamate exchanger and the excitatory amino acid transporters in the rat lens.
    Lim J; Lam YC; Kistler J; Donaldson PJ
    Invest Ophthalmol Vis Sci; 2005 Aug; 46(8):2869-77. PubMed ID: 16043861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron regulates L-cystine uptake and glutathione levels in lens epithelial and retinal pigment epithelial cells by its effect on cytosolic aconitase.
    Lall MM; Ferrell J; Nagar S; Fleisher LN; McGahan MC
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):310-9. PubMed ID: 18172108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization of a reduced glutathione transporter in the lens.
    Kannan R; Yi JR; Zlokovic BV; Kaplowitz N
    Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1785-92. PubMed ID: 7635653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles for KCC transporters in the maintenance of lens transparency.
    Chee KS; Kistler J; Donaldson PJ
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):673-82. PubMed ID: 16431967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling cortical cataractogenesis XXIV: uptake by the lens of glutathione injected into the rat.
    Stewart-DeHaan PJ; Dzialoszynski T; Trevithick JR
    Mol Vis; 1999 Dec; 5():37. PubMed ID: 10617774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional differences in glutathione accumulation pathways in the rat cornea: Mapping of amino acid transporters involved in glutathione synthesis.
    Yoganandarajah V; Li B; Umapathy A; Donaldson PJ; Lim JC
    Exp Eye Res; 2017 Aug; 161():89-100. PubMed ID: 28410963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional differences in cystine accumulation point to a sutural delivery pathway to the lens core.
    Li L; Lim J; Jacobs MD; Kistler J; Donaldson PJ
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1253-60. PubMed ID: 17325170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The synthesis and localization of crystallins in different cell compartments of the crystalline lens in adult frogs: immunoautoradiographic and immunofluorescent research].
    Simirskiĭ VN; Fedtsova NG; Aleĭnikova KS; Mikhaĭlov AT
    Ontogenez; 1991; 22(4):381-93. PubMed ID: 1945270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood-to-lens transport of reduced glutathione in an in situ perfused guinea-pig eye.
    Zlokovic BV; Mackic JB; McComb JG; Kaplowitz N; Weiss MH; Kannan R
    Exp Eye Res; 1994 Oct; 59(4):487-96. PubMed ID: 7859824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione and lens epithelial function.
    Giblin FJ; Chakrapani B; Reddy VN
    Invest Ophthalmol; 1976 May; 15(5):381-93. PubMed ID: 131114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity.
    Gegg ME; Clark JB; Heales SJ
    Brain Res; 2005 Mar; 1036(1-2):1-6. PubMed ID: 15725395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular identification and cellular localization of a potential transport system involved in cystine/cysteine uptake in human lenses.
    Lim JC; Lam L; Li B; Donaldson PJ
    Exp Eye Res; 2013 Nov; 116():219-26. PubMed ID: 24056007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and Functional Characterization of a GSH Conjugate Efflux Pathway in the Rat Lens.
    Umapathy A; Li B; Donaldson PJ; Lim JC
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5256-68. PubMed ID: 26244301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in glutathione homeostasis in mutant Eisai hyperbilirubinemic rats.
    Lu SC; Cai J; Kuhlenkamp J; Sun WM; Takikawa H; Takenaka O; Horie T; Yi J; Kaplowitz N
    Hepatology; 1996 Jul; 24(1):253-8. PubMed ID: 8707271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.