These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19941909)

  • 41. Place conditioning with cocaine and the dopamine uptake inhibitor GBR12783.
    Le Pen G; Duterte-Boucher D; Costentin J
    Neuroreport; 1996 Nov; 7(18):2839-42. PubMed ID: 9116192
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of remoxipride, an atypical antipsychotic, on cocaine self-administration in the rat using fixed- and progressive-ratio schedules of reinforcement.
    Bourland JA; French ED
    Drug Alcohol Depend; 1995 Dec; 40(2):111-4. PubMed ID: 8745132
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Naloxone attenuation of the effect of cocaine on rewarding brain stimulation.
    Bain GT; Kornetsky C
    Life Sci; 1987 Mar; 40(11):1119-25. PubMed ID: 3493402
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The 5-HT3 antagonist Y-25130 blocks cocaine-induced lowering of ICSS reward thresholds in the rat.
    Kelley SP; Hodge CW
    Pharmacol Biochem Behav; 2003 Jan; 74(2):297-302. PubMed ID: 12479948
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The quetiapine active metabolite N-desalkylquetiapine and the neurotensin NTS₁ receptor agonist PD149163 exhibit antidepressant-like effects on operant responding in male rats.
    Hillhouse TM; Shankland Z; Matazel KS; Keiser AA; Prus AJ
    Exp Clin Psychopharmacol; 2014 Dec; 22(6):548-56. PubMed ID: 25285844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of cocaine and GBR-12909 on brain stimulation reward.
    Maldonado-Irizarry CS; Stellar JR; Kelley AE
    Pharmacol Biochem Behav; 1994 Aug; 48(4):915-20. PubMed ID: 7972296
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of atypical antipsychotic drugs on intralipid intake and cocaine-induced hyperactivity in rats.
    Hartfield AW; Moore NA; Clifton PG
    Neuropsychopharmacology; 2006 Sep; 31(9):1938-45. PubMed ID: 16292324
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of alpha(1)-adrenoceptors of the locus coeruleus in self-stimulation of the medial forebrain bundle.
    Lin Y; de Vaca SC; Carr KD; Stone EA
    Neuropsychopharmacology; 2007 Apr; 32(4):835-41. PubMed ID: 16823385
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simultaneous rate-independent and rate-dependent assessment of intracranial self-stimulation: evidence for the direct involvement of dopamine in brain reinforcement mechanisms.
    Zarevics P; Setler PE
    Brain Res; 1979 Jun; 169(3):499-512. PubMed ID: 312681
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chronic exercise increases sensitivity to the conditioned rewarding effects of cocaine.
    Smith MA; Gergans SR; Iordanou JC; Lyle MA
    Pharmacol Rep; 2008; 60(4):561-5. PubMed ID: 18799826
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of quetiapine (Seroquel™) on conditioned place preference and elevated plus maze tests in rats when administered alone and in combination with (+)-amphetamine.
    McLelland AE; Martin-Iverson MT; Beninger RJ
    Psychopharmacology (Berl); 2014 Nov; 231(22):4349-59. PubMed ID: 24800893
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synergistic effects of ethanol and cocaine on brain stimulation reward.
    Lewis MJ; June HL
    J Exp Anal Behav; 1994 Mar; 61(2):223-9. PubMed ID: 8169571
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of quetiapine treatment on cocaine self-administration and behavioral indices of sleep in adult rhesus monkeys.
    Brutcher RE; Nader MA
    Psychopharmacology (Berl); 2015 Jan; 232(2):411-20. PubMed ID: 25030802
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Repeated electrical stimulation of reward-related brain regions affects cocaine but not "natural" reinforcement.
    Levy D; Shabat-Simon M; Shalev U; Barnea-Ygael N; Cooper A; Zangen A
    J Neurosci; 2007 Dec; 27(51):14179-89. PubMed ID: 18094257
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cocaine-induced reward enhancement measured with intracranial self-stimulation in rats bred for low versus high saccharin intake.
    Radke AK; Zlebnik NE; Holtz NA; Carroll ME
    Behav Pharmacol; 2016 Apr; 27(2-3 Spec Issue):133-6. PubMed ID: 26292189
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intracranial self-stimulation in FAST and SLOW mice: effects of alcohol and cocaine.
    Fish EW; Robinson JE; Krouse MC; Hodge CW; Reed C; Phillips TJ; Malanga CJ
    Psychopharmacology (Berl); 2012 Apr; 220(4):719-30. PubMed ID: 21983918
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Operant conditioning of rat navigation using electrical stimulation for directional cues and rewards.
    Lee MG; Jun G; Choi HS; Jang HS; Bae YC; Suk K; Jang IS; Choi BJ
    Behav Processes; 2010 Jul; 84(3):715-20. PubMed ID: 20417259
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cocaine withdrawal alters the reward omission effect and enhances traits of negative urgency in rats across multiple days of testing.
    Barker AT; Rebec GV
    Drug Alcohol Depend; 2016 Jun; 163 Suppl 1(Suppl 1):S19-24. PubMed ID: 27306726
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cannabinoid receptor blockade reduces the opportunity cost at which rats maintain operant performance for rewarding brain stimulation.
    Trujillo-Pisanty I; Hernandez G; Moreau-Debord I; Cossette MP; Conover K; Cheer JF; Shizgal P
    J Neurosci; 2011 Apr; 31(14):5426-35. PubMed ID: 21471378
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cocaine cues drive opposing context-dependent shifts in reward processing and emotional state.
    Wheeler RA; Aragona BJ; Fuhrmann KA; Jones JL; Day JJ; Cacciapaglia F; Wightman RM; Carelli RM
    Biol Psychiatry; 2011 Jun; 69(11):1067-74. PubMed ID: 21481843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.