These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 19941954)

  • 1. Should spikes be treated with equal weightings in the generation of spectro-temporal receptive fields?
    Chang TR; Chiu TW; Chung PC; Poon PW
    J Physiol Paris; 2010; 104(3-4):215-22. PubMed ID: 19941954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-correlation and joint spectro-temporal receptive field properties in auditory cortex.
    Tomita M; Eggermont JJ
    J Neurophysiol; 2005 Jan; 93(1):378-92. PubMed ID: 15342718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method for adjusting neural response jitter in the STRF obtained by spike-trigger averaging.
    Chang TR; Chung PC; Chiu TW; Poon PW
    Biosystems; 2005; 79(1-3):213-22. PubMed ID: 15649607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating receptive fields in the presence of spike-time jitter.
    Gollisch T
    Network; 2006 Jun; 17(2):103-29. PubMed ID: 16818393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling frequency modulated responses of midbrain auditory neurons based on trigger features and artificial neural networks.
    Chang TR; Chiu TW; Sun X; Poon PW
    Brain Res; 2012 Jan; 1434():90-101. PubMed ID: 22035565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrast tuned responses in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Eur J Neurosci; 2012 Feb; 35(4):550-61. PubMed ID: 22321018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Context dependence of spectro-temporal receptive fields with implications for neural coding.
    Eggermont JJ
    Hear Res; 2011 Jan; 271(1-2):123-32. PubMed ID: 20123121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple-band trigger features of midbrain auditory neurons revealed in composite spectro-temporal receptive fields.
    Chiu TW; Poon PW
    Chin J Physiol; 2007 Jun; 50(3):105-12. PubMed ID: 17867430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capturing contextual effects in spectro-temporal receptive fields.
    Westö J; May PJ
    Hear Res; 2016 Sep; 339():195-210. PubMed ID: 27473504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating sparse spectro-temporal receptive fields with natural stimuli.
    David SV; Mesgarani N; Shamma SA
    Network; 2007 Sep; 18(3):191-212. PubMed ID: 17852750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of spectro-temporal tuning over several seconds in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Neuroscience; 2007 Sep; 148(3):806-14. PubMed ID: 17693032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delayed inhibition in cortical receptive fields and the discrimination of complex stimuli.
    Narayan R; Ergün A; Sen K
    J Neurophysiol; 2005 Oct; 94(4):2970-5. PubMed ID: 15917327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectro-temporal receptive fields of midbrain auditory neurons in the rat obtained with frequency modulated stimulation.
    Poon PW; Yu PP
    Neurosci Lett; 2000 Jul; 289(1):9-12. PubMed ID: 10899396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine frequency-modulation trigger features of midbrain auditory neurons extracted by the progressive thresholding method--a preliminary study.
    Chang TR; Chiu TW; Sun X; Poon PW
    Chin J Physiol; 2010 Dec; 53(6):430-8. PubMed ID: 21793355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling complex responses of FM-sensitive cells in the auditory midbrain using a committee machine.
    Chang TR; Chiu TW; Sun X; Poon PW
    Brain Res; 2013 Nov; 1536():44-52. PubMed ID: 23665390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General properties of auditory spectro-temporal receptive fields.
    Mahajan NR; Mesgarani N; Hermansky H
    J Acoust Soc Am; 2019 Dec; 146(6):EL459. PubMed ID: 31893764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus dependence of spectro-temporal receptive fields in cat primary auditory cortex.
    Valentine PA; Eggermont JJ
    Hear Res; 2004 Oct; 196(1-2):119-33. PubMed ID: 15464309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spike-timing precision underlies the coding efficiency of auditory receptor neurons.
    Rokem A; Watzl S; Gollisch T; Stemmler M; Herz AV; Samengo I
    J Neurophysiol; 2006 Apr; 95(4):2541-52. PubMed ID: 16354733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sound representation methods for spectro-temporal receptive field estimation.
    Gill P; Zhang J; Woolley SM; Fremouw T; Theunissen FE
    J Comput Neurosci; 2006 Aug; 21(1):5-20. PubMed ID: 16633939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encoding of virtual acoustic space stimuli by neurons in ferret primary auditory cortex.
    Mrsic-Flogel TD; King AJ; Schnupp JW
    J Neurophysiol; 2005 Jun; 93(6):3489-503. PubMed ID: 15659534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.