These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 19942250)

  • 1. Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation.
    Shakir K; Elkafrawy AF; Ghoneimy HF; Elrab Beheir SG; Refaat M
    Water Res; 2010 Mar; 44(5):1449-61. PubMed ID: 19942250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite.
    Selvam PP; Preethi S; Basakaralingam P; Thinakaran N; Sivasamy A; Sivanesan S
    J Hazard Mater; 2008 Jun; 155(1-2):39-44. PubMed ID: 18162299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater.
    Wang S; Soudi M; Li L; Zhu ZH
    J Hazard Mater; 2006 May; 133(1-3):243-51. PubMed ID: 16310947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of a dye from simulated wastewater by adsorption using treated parthenium biomass.
    Lata H; Mor S; Garg VK; Gupta RK
    J Hazard Mater; 2008 May; 153(1-2):213-20. PubMed ID: 17884283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution.
    Panda GC; Das SK; Guha AK
    J Hazard Mater; 2009 May; 164(1):374-9. PubMed ID: 18804326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The removal of anionic dyes from aqueous solutions in the presence of anionic surfactant using aminopropylsilica--a kinetic study.
    Cestari AR; Vieira EF; Vieira GS; Almeida LE
    J Hazard Mater; 2006 Nov; 138(1):133-41. PubMed ID: 16797835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2.
    Wang X; Wang J; Guo P; Guo W; Wang C
    J Hazard Mater; 2009 Sep; 169(1-3):486-91. PubMed ID: 19411137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution: kinetic and equilibrium studies.
    Kadirvelu K; Karthika C; Vennilamani N; Pattabhi S
    Chemosphere; 2005 Aug; 60(8):1009-17. PubMed ID: 15993147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing removal efficiency of anionic dye by combination and calcination of clay materials and calcium hydroxide.
    Vimonses V; Jin B; Chow CW; Saint C
    J Hazard Mater; 2009 Nov; 171(1-3):941-7. PubMed ID: 19604637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation.
    Hu CY; Lo SL; Kuan WH; Lee YD
    Water Res; 2005 Mar; 39(5):895-901. PubMed ID: 15743636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater.
    Fang R; Cheng X; Xu X
    Bioresour Technol; 2010 Oct; 101(19):7323-9. PubMed ID: 20576562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decolorization of dyes and textile wastewater by potassium permanganate.
    Xu XR; Li HB; Wang WH; Gu JD
    Chemosphere; 2005 May; 59(6):893-8. PubMed ID: 15811419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology.
    Moghaddam SS; Moghaddam MR; Arami M
    J Hazard Mater; 2010 Mar; 175(1-3):651-7. PubMed ID: 19944532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intensification of degradation of aqueous solutions of rhodamine B using sonochemical reactors at operating capacity of 7 L.
    Mishra KP; Gogate PR
    J Environ Manage; 2011 Aug; 92(8):1972-7. PubMed ID: 21530069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of copper ions from aqueous solutions by kaolinite and batch design.
    Alkan M; Kalay B; Doğan M; Demirbaş O
    J Hazard Mater; 2008 May; 153(1-2):867-76. PubMed ID: 17976907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal removal from waste waters by ion flotation.
    Polat H; Erdogan D
    J Hazard Mater; 2007 Sep; 148(1-2):267-73. PubMed ID: 17374447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor.
    Taştan BE; Ertuğrul S; Dönmez G
    Bioresour Technol; 2010 Feb; 101(3):870-6. PubMed ID: 19773159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of adsorption potential of adsorbents: a case of uptake of cationic dyes.
    Maurya NS; Mittal AK; Cornel P
    J Environ Biol; 2008 Jan; 29(1):31-6. PubMed ID: 18831328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of removal of cadmium from aqueous solutions by plant leaves and the effects of interaction of combinations of leaves on their removal efficiency.
    Salim R; Al-Subu M; Dawod E
    J Environ Manage; 2008 May; 87(3):521-32. PubMed ID: 17374434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifactorial optimization of the decolorisation parameters of wastewaters resulting from dyeing flowers.
    Pavas EG; Gómez-García MA
    Water Sci Technol; 2009; 59(7):1361-9. PubMed ID: 19381002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.