BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19942518)

  • 1. Fundamental performance assessment of 2-D myocardial elastography in a phased-array configuration.
    Luo J; Lee WN; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2320-7. PubMed ID: 19942518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical quality assessment of myocardial elastography with in vivo validation.
    Lee WN; Ingrassia CM; Fung-Kee-Fung SD; Costa KD; Holmes JW; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Nov; 54(11):2233-45. PubMed ID: 18051158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 May; 35(5):796-812. PubMed ID: 19282094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frame rate, full-view myocardial elastography with automated contour tracking in murine left ventricles in vivo.
    Luo J; Konofagou EE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):240-8. PubMed ID: 18334330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary validation of angle-independent myocardial elastography using MR tagging in a clinical setting.
    Lee WN; Qian Z; Tosti CL; Brown TR; Metaxas DN; Konofagou EE
    Ultrasound Med Biol; 2008 Dec; 34(12):1980-97. PubMed ID: 18952364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast axial and lateral displacement estimation in myocardial elastography based on RF signals with predictions.
    Zhang Y; Sun T; Teng Y; Li H; Kang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1633-9. PubMed ID: 26405928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical Motion Estimation With Bayesian Regularization in Cardiac Elastography: Simulation and In Vivo Validation.
    Mukaddim RA; Meshram NH; Mitchell CC; Varghese T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Nov; 66(11):1708-1722. PubMed ID: 31329553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo study of myocardial elastography under graded ischemia conditions.
    Lee WN; Provost J; Fujikura K; Wang J; Konofagou EE
    Phys Med Biol; 2011 Feb; 56(4):1155-72. PubMed ID: 21285479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualizing the radial and circumferential strain distribution within vessel phantoms using synthetic-aperture ultrasound elastography.
    Korukonda S; Doyley MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1639-53. PubMed ID: 22899112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of two dimensional displacement and strain estimation techniques using a phased array transducer.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 Dec; 35(12):2031-41. PubMed ID: 19854565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angle-independent and multi-dimensional myocardial elastography--from theory to clinical validation.
    Lee WN; Konofagou EE
    Ultrasonics; 2008 Nov; 48(6-7):563-7. PubMed ID: 18757071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
    Al Mukaddim R; Meshram NH; Varghese T
    Phys Med Biol; 2020 Mar; 65(6):065008. PubMed ID: 32028272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel spline-based approach for robust strain estimation in elastography.
    Alam SK
    Ultrason Imaging; 2010 Apr; 32(2):91-102. PubMed ID: 20687277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive carotid strain imaging using angular compounding at large beam steered angles: validation in vessel phantoms.
    Hansen HH; Lopata RG; de Korte CL
    IEEE Trans Med Imaging; 2009 Jun; 28(6):872-80. PubMed ID: 19131297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional canine heart model for cardiac elastography.
    Chen H; Varghese T
    Med Phys; 2010 Nov; 37(11):5876-86. PubMed ID: 21158300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometric regularization for 2-D myocardial strain quantification in mice: an in-silico study.
    Kremer F; Choi HF; Langeland S; D'Agostino E; Claus P; D'hooge J
    Ultrasound Med Biol; 2010 Jul; 36(7):1157-68. PubMed ID: 20620702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of cardiac displacement and strain imaging using ultrasound radiofrequency and envelope signals.
    Ma C; Varghese T
    Ultrasonics; 2013 Mar; 53(3):782-92. PubMed ID: 23259981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temporal acquisition parameters on image quality of strain time constant elastography.
    Nair S; Varghese J; Chaudhry A; Righetti R
    Ultrason Imaging; 2015 Apr; 37(2):87-100. PubMed ID: 24942645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain estimation by a Fourier Series-based extrema tracking algorithm for elastography.
    Wang W; Hu D; Wang J; Zou W
    Ultrasonics; 2015 Sep; 62():278-91. PubMed ID: 26096883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting the Cramér Rao Lower Bound for Elastography: Predicting the Performance of Axial, Lateral and Polar Strain Elastograms.
    Verma P; Doyley MM
    Ultrasound Med Biol; 2017 Sep; 43(9):1780-1796. PubMed ID: 28655468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.