BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19942526)

  • 21. Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound.
    Kaye EA; Hertzberg Y; Marx M; Werner B; Navon G; Levoy M; Pauly KB
    Med Phys; 2012 Oct; 39(10):6254-63. PubMed ID: 23039661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.
    Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J
    Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel transmit aperture for very large depth of focus in medical ultrasound B-scan.
    Zheng Y; Silverstein SD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jun; 53(6):1079-87. PubMed ID: 16846141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spherical aberration correction suitable for a wavefront controller.
    Itoh H; Matsumoto N; Inoue T
    Opt Express; 2009 Aug; 17(16):14367-73. PubMed ID: 19654844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive imaging on a diagnostic ultrasound scanner at quasi real-time rates.
    Dahl JJ; McAleavey SA; Pinton GF; Soo MS; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1832-43. PubMed ID: 17036791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phase-aberration correction with a 3-D ultrasound scanner: feasibility study.
    Ivancevich NM; Dahl JJ; Trahey GE; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Aug; 53(8):1432-9. PubMed ID: 16921895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcostal high-intensity-focused ultrasound: ex vivo adaptive focusing feasibility study.
    Aubry JF; Pernot M; Marquet F; Tanter M; Fink M
    Phys Med Biol; 2008 Jun; 53(11):2937-51. PubMed ID: 18475006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase-Aberration Correction for HIFU Therapy Using a Multielement Array and Backscattering of Nonlinear Pulses.
    Thomas GPL; Khokhlova TD; Bawiec CR; Peek AT; Sapozhnikov OA; O'Donnell M; Khokhlova VA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1040-1050. PubMed ID: 33052845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase aberration correction by correlation in digital holographic adaptive optics.
    Liu C; Yu X; Kim MK
    Appl Opt; 2013 Apr; 52(12):2940-9. PubMed ID: 23669707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overdetermined least-squares aberration estimates using common-midpoint signals.
    Haun MA; Jones DL; O'Brien WD
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1205-20. PubMed ID: 15493689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive imaging and spatial compounding in the presence of aberration.
    Dahl JJ; Guenther DA; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1131-44. PubMed ID: 16212252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implementation of the near-field signal redundancy phase-aberration correction algorithm on two-dimensional arrays.
    Li Y; Robinson B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jan; 54(1):42-51. PubMed ID: 17225799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iteration of transmit-beam aberration correction in medical ultrasound imaging.
    Måsøy SE; Varslot T; Angelsen B
    J Acoust Soc Am; 2005 Jan; 117(1):450-61. PubMed ID: 15704438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correction of Non-Linear Propagation Artifact in Contrast-Enhanced Ultrasound Imaging of Carotid Arteries: Methods and in Vitro Evaluation.
    Yildiz YO; Eckersley RJ; Senior R; Lim AK; Cosgrove D; Tang MX
    Ultrasound Med Biol; 2015 Jul; 41(7):1938-47. PubMed ID: 25935597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrafast compound imaging for 2-D motion vector estimation: application to transient elastography.
    Tanter M; Bercoff J; Sandrin L; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Oct; 49(10):1363-74. PubMed ID: 12403138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing acoustic fields of clinically relevant transducers: the effect of hydrophone probes' finite apertures and bandwidths.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1262-70. PubMed ID: 15553510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel phase assignment protocol and driving system for a high-density focused ultrasound array.
    Caulfield RE; Yin X; Juste J; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Apr; 54(4):793-801. PubMed ID: 17441588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extension of the crosstalk cancellation method in ultrasonic transducer arrays from the harmonic regime to the transient one.
    Bybi A; Grondel S; Assaad J; Hladky-Hennion AC
    Ultrasonics; 2014 Feb; 54(2):720-4. PubMed ID: 24064509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Airborne ultrasonic phased arrays using ferroelectrets: a new fabrication approach.
    Ealo JL; Camacho JJ; Fritsch C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):848-58. PubMed ID: 19406714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.