These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 19942533)
1. Improved parameter estimates based on the homodyned K distribution. Hruska DP; Oelze ML IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2471-81. PubMed ID: 19942533 [TBL] [Abstract][Full Text] [Related]
2. Characterization of thyroid cancer in mouse models using high-frequency quantitative ultrasound techniques. Lavarello RJ; Ridgway WR; Sarwate SS; Oelze ML Ultrasound Med Biol; 2013 Dec; 39(12):2333-41. PubMed ID: 24035621 [TBL] [Abstract][Full Text] [Related]
3. ESTIMATION METHOD OF THE HOMODYNED K-DISTRIBUTION BASED ON THE MEAN INTENSITY AND TWO LOG-MOMENTS. Destrempes F; Porée J; Cloutier G SIAM J Imaging Sci; 2013 Aug; 6(3):1499-1530. PubMed ID: 24795788 [TBL] [Abstract][Full Text] [Related]
4. An Improved Parameter Estimator of the Homodyned K Distribution Based on the Maximum Likelihood Method for Ultrasound Tissue Characterization. Liu Y; Zhang Y; He B; Li Z; Lang X; Liang H; Chen J Ultrason Imaging; 2022 Jul; 44(4):142-160. PubMed ID: 35674146 [TBL] [Abstract][Full Text] [Related]
5. Improved parametric imaging of scatterer size estimates using angular compounding. Gerig AL; Varghese T; Zagzebski JA IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):708-15. PubMed ID: 15244284 [TBL] [Abstract][Full Text] [Related]
6. Improved diagnostics through quantitative ultrasound imaging. Hruska DP; Sanchez J; Oelze ML Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1956-9. PubMed ID: 19964021 [TBL] [Abstract][Full Text] [Related]
7. Parameter estimation of the homodyned K distribution based on an artificial neural network for ultrasound tissue characterization. Zhou Z; Gao A; Wu W; Tai DI; Tseng JH; Wu S; Tsui PH Ultrasonics; 2021 Mar; 111():106308. PubMed ID: 33290957 [TBL] [Abstract][Full Text] [Related]
8. Improving the statistics of quantitative ultrasound techniques with deformation compounding: an experimental study. Herd MT; Hall TJ; Jiang J; Zagzebski JA Ultrasound Med Biol; 2011 Dec; 37(12):2066-74. PubMed ID: 22033132 [TBL] [Abstract][Full Text] [Related]
9. Classification of the stages of hyperplasia in breast ducts by analyzing different depths and segmentation of ultrasound breast scans into ductal areas. Taslidere E; Cohen FS; Georgiou G Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2396-9. PubMed ID: 17946958 [TBL] [Abstract][Full Text] [Related]
10. [Monitoring microwave ablation using ultrasound backscatter homodyned K imaging: Comparison of estimators]. Song S; Zhang Y; Zhou Z; Wu S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):520-527. PubMed ID: 34180198 [TBL] [Abstract][Full Text] [Related]
11. Ultrasound Homodyned-K Contrast-Weighted Summation Parametric Imaging Based on H-scan for Detecting Microwave Ablation Zones. Li S; Zhou Z; Wu S; Wu W Ultrason Imaging; 2023 May; 45(3):119-135. PubMed ID: 36995065 [TBL] [Abstract][Full Text] [Related]
12. Velocity estimation in ultrasound images: a block matching approach. Boukerroui D; Noble JA; Brady M Inf Process Med Imaging; 2003 Jul; 18():586-98. PubMed ID: 15344490 [TBL] [Abstract][Full Text] [Related]
13. Noise reduction using spatial-angular compounding for elastography. Techavipoo U; Chen Q; Varghese T; Zagzebski JA; Madsen EL IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):510-20. PubMed ID: 15217229 [TBL] [Abstract][Full Text] [Related]
14. Classification of breast lesions using segmented quantitative ultrasound maps of homodyned K distribution parameters. Byra M; Nowicki A; Wróblewska-Piotrzkowska H; Dobruch-Sobczak K Med Phys; 2016 Oct; 43(10):5561. PubMed ID: 27782690 [TBL] [Abstract][Full Text] [Related]
15. Classification of simulated hyperplastic stages in the breast ducts based on ultrasound RF echo. Taslidere E; Cohen FS; Georgiou G IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):50-63. PubMed ID: 18334313 [TBL] [Abstract][Full Text] [Related]
16. Discrimination of breast microcalcifications using a strain-compounding technique with ultrasound speckle factor imaging. Liao YY; Li CH; Tsui PH; Chang CC; Kuo WH; Chang KJ; Yeh CK IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):955-65. PubMed ID: 24859659 [TBL] [Abstract][Full Text] [Related]
17. Spatial Compounding Technique to Obtain Rotation Elastogram: A Feasibility Study. Kothawala A; Chandramoorthi S; Reddy NRK; Thittai AK Ultrasound Med Biol; 2017 Jun; 43(6):1290-1301. PubMed ID: 28433440 [TBL] [Abstract][Full Text] [Related]
18. Circular ultrasound compounding by designed matrix weighting. Bashford GR; Morse JL IEEE Trans Med Imaging; 2006 Jun; 25(6):732-41. PubMed ID: 16768238 [TBL] [Abstract][Full Text] [Related]
19. A restoration framework for ultrasonic tissue characterization. Alessandrini M; Maggio S; Porée J; De Marchi L; Speciale N; Franceschini E; Bernard O; Basset O IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2344-60. PubMed ID: 22083768 [TBL] [Abstract][Full Text] [Related]
20. Quantitative ultrasonic characterization of diffuse scatterers in the presence of structures that produce coherent echoes. Luchies AC; Ghoshal G; O'Brien WD; Oelze ML IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):893-904. PubMed ID: 22622974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]