BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19942533)

  • 1. Improved parameter estimates based on the homodyned K distribution.
    Hruska DP; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2471-81. PubMed ID: 19942533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of thyroid cancer in mouse models using high-frequency quantitative ultrasound techniques.
    Lavarello RJ; Ridgway WR; Sarwate SS; Oelze ML
    Ultrasound Med Biol; 2013 Dec; 39(12):2333-41. PubMed ID: 24035621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ESTIMATION METHOD OF THE HOMODYNED K-DISTRIBUTION BASED ON THE MEAN INTENSITY AND TWO LOG-MOMENTS.
    Destrempes F; Porée J; Cloutier G
    SIAM J Imaging Sci; 2013 Aug; 6(3):1499-1530. PubMed ID: 24795788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Improved Parameter Estimator of the Homodyned K Distribution Based on the Maximum Likelihood Method for Ultrasound Tissue Characterization.
    Liu Y; Zhang Y; He B; Li Z; Lang X; Liang H; Chen J
    Ultrason Imaging; 2022 Jul; 44(4):142-160. PubMed ID: 35674146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved parametric imaging of scatterer size estimates using angular compounding.
    Gerig AL; Varghese T; Zagzebski JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):708-15. PubMed ID: 15244284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved diagnostics through quantitative ultrasound imaging.
    Hruska DP; Sanchez J; Oelze ML
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1956-9. PubMed ID: 19964021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter estimation of the homodyned K distribution based on an artificial neural network for ultrasound tissue characterization.
    Zhou Z; Gao A; Wu W; Tai DI; Tseng JH; Wu S; Tsui PH
    Ultrasonics; 2021 Mar; 111():106308. PubMed ID: 33290957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the statistics of quantitative ultrasound techniques with deformation compounding: an experimental study.
    Herd MT; Hall TJ; Jiang J; Zagzebski JA
    Ultrasound Med Biol; 2011 Dec; 37(12):2066-74. PubMed ID: 22033132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of the stages of hyperplasia in breast ducts by analyzing different depths and segmentation of ultrasound breast scans into ductal areas.
    Taslidere E; Cohen FS; Georgiou G
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2396-9. PubMed ID: 17946958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Monitoring microwave ablation using ultrasound backscatter homodyned K imaging: Comparison of estimators].
    Song S; Zhang Y; Zhou Z; Wu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):520-527. PubMed ID: 34180198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound Homodyned-K Contrast-Weighted Summation Parametric Imaging Based on H-scan for Detecting Microwave Ablation Zones.
    Li S; Zhou Z; Wu S; Wu W
    Ultrason Imaging; 2023 May; 45(3):119-135. PubMed ID: 36995065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velocity estimation in ultrasound images: a block matching approach.
    Boukerroui D; Noble JA; Brady M
    Inf Process Med Imaging; 2003 Jul; 18():586-98. PubMed ID: 15344490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise reduction using spatial-angular compounding for elastography.
    Techavipoo U; Chen Q; Varghese T; Zagzebski JA; Madsen EL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):510-20. PubMed ID: 15217229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of breast lesions using segmented quantitative ultrasound maps of homodyned K distribution parameters.
    Byra M; Nowicki A; Wróblewska-Piotrzkowska H; Dobruch-Sobczak K
    Med Phys; 2016 Oct; 43(10):5561. PubMed ID: 27782690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of simulated hyperplastic stages in the breast ducts based on ultrasound RF echo.
    Taslidere E; Cohen FS; Georgiou G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):50-63. PubMed ID: 18334313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of breast microcalcifications using a strain-compounding technique with ultrasound speckle factor imaging.
    Liao YY; Li CH; Tsui PH; Chang CC; Kuo WH; Chang KJ; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):955-65. PubMed ID: 24859659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Compounding Technique to Obtain Rotation Elastogram: A Feasibility Study.
    Kothawala A; Chandramoorthi S; Reddy NRK; Thittai AK
    Ultrasound Med Biol; 2017 Jun; 43(6):1290-1301. PubMed ID: 28433440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circular ultrasound compounding by designed matrix weighting.
    Bashford GR; Morse JL
    IEEE Trans Med Imaging; 2006 Jun; 25(6):732-41. PubMed ID: 16768238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A restoration framework for ultrasonic tissue characterization.
    Alessandrini M; Maggio S; Porée J; De Marchi L; Speciale N; Franceschini E; Bernard O; Basset O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2344-60. PubMed ID: 22083768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative ultrasonic characterization of diffuse scatterers in the presence of structures that produce coherent echoes.
    Luchies AC; Ghoshal G; O'Brien WD; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):893-904. PubMed ID: 22622974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.