These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19942534)

  • 1. Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging.
    Chen SL; Huang SW; Ling T; Ashkenazi S; Guo LJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2482-91. PubMed ID: 19942534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging.
    Chen SL; Ling T; Guo LJ
    J Biomed Opt; 2011 May; 16(5):056001. PubMed ID: 21639569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues.
    Zhang E; Laufer J; Beard P
    Appl Opt; 2008 Feb; 47(4):561-77. PubMed ID: 18239717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency ultrasound sensors using polymer microring resonators.
    Chao CY; Ashkenazi S; Huang SW; O'Donnell M; Guo LJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 May; 54(5):957-65. PubMed ID: 17523560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thin polymer etalon arrays for high-resolution photoacoustic imaging.
    Hou Y; Huang SW; Ashkenazi S; Witte R; O'Donnell M
    J Biomed Opt; 2008; 13(6):064033. PubMed ID: 19123679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional photoacoustic imaging using a two-dimensional CMUT array.
    Vaithilingam S; Ma TJ; Furukawa Y; Wygant IO; Zhuang X; De La Zerda A; Oralkan O; Kamaya A; Gambhir SS; Jeffrey RB; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2411-9. PubMed ID: 19942528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-noise wideband ultrasound detection using polymer microring resonators.
    Huang SW; Chen SL; Ling T; Maxwell A; O'Donnell M; Guo LJ; Ashkenazi S
    Appl Phys Lett; 2008 May; 92(19):193509-1935093. PubMed ID: 19479044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoacoustic imaging with a commercial ultrasound system and a custom probe.
    Wang X; Fowlkes JB; Cannata JM; Hu C; Carson PL
    Ultrasound Med Biol; 2011 Mar; 37(3):484-92. PubMed ID: 21276653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens.
    Pramanik M; Ku G; Wang LV
    J Biomed Opt; 2009; 14(2):024028. PubMed ID: 19405757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Broadband Polyvinylidene Difluoride-Based Hydrophone with Integrated Readout Circuit for Intravascular Photoacoustic Imaging.
    Daeichin V; Chen C; Ding Q; Wu M; Beurskens R; Springeling G; Noothout E; Verweij MD; van Dongen KW; Bosch JG; van der Steen AF; de Jong N; Pertijs M; van Soest G
    Ultrasound Med Biol; 2016 May; 42(5):1239-43. PubMed ID: 26856788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time full-field photoacoustic imaging using an ultrasonic camera.
    Balogun O; Regez B; Zhang HF; Krishnaswamy S
    J Biomed Opt; 2010; 15(2):021318. PubMed ID: 20459240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing and improving acoustic radiation force image quality using a 1.5-D transducer design.
    Dhanaliwala AH; Hossack JA; Mauldin FW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1602-8. PubMed ID: 22828855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of objects in photoacoustic tomography using selective filtering.
    Shin DH; Yang Y; Song CG
    Biomed Mater Eng; 2015; 26 Suppl 1():S1223-30. PubMed ID: 26405881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined photoacoustic and acoustic imaging of human breast specimens in the mammographic geometry.
    Xie Z; Hooi FM; Fowlkes JB; Pinsky RW; Wang X; Carson PL
    Ultrasound Med Biol; 2013 Nov; 39(11):2176-84. PubMed ID: 23972486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector.
    Li C; Wang LV
    J Biomed Opt; 2009; 14(2):024047. PubMed ID: 19405775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-wideband three-dimensional optoacoustic tomography.
    Gateau J; Chekkoury A; Ntziachristos V
    Opt Lett; 2013 Nov; 38(22):4671-4. PubMed ID: 24322102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of photoacoustic imaging and high-intensity focused ultrasound.
    Cui H; Staley J; Yang X
    J Biomed Opt; 2010; 15(2):021312. PubMed ID: 20459234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coded excitation for photoacoustic imaging using a high-speed diode laser.
    Su SY; Li PC
    Opt Express; 2011 Jan; 19(2):1174-82. PubMed ID: 21263658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concurrent photoacoustic-ultrasound imaging using single-laser pulses.
    Hung SY; Wu WS; Hsieh BY; Li PC
    J Biomed Opt; 2015 Aug; 20(8):86004. PubMed ID: 26259707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional photoacoustic imaging using fiber-based line detectors.
    GrĂ¼n H; Berer T; Burgholzer P; Nuster R; Paltauf G
    J Biomed Opt; 2010; 15(2):021306. PubMed ID: 20459228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.