These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 19943010)
1. Occurrence of apocrine secretion in the larval gut epithelial cells of Aedes aegypti L., Anopheles albitarsis Lynch-Arribálzaga and Culex quinquefasciatus say (Diptera: Culicidae): a defense strategy against infection by Bacillus sphaericus Neide? Oliveira CD; Tadei WP; Abdalla FC Neotrop Entomol; 2009; 38(5):624-31. PubMed ID: 19943010 [TBL] [Abstract][Full Text] [Related]
2. Efficacy of Lysinibacillus sphaericus against mixed-cultures of field-collected and laboratory larvae of Aedes aegypti and Culex quinquefasciatus. Santana-Martinez JC; Silva JJ; Dussan J Bull Entomol Res; 2019 Feb; 109(1):111-118. PubMed ID: 29784071 [TBL] [Abstract][Full Text] [Related]
3. Larvicidal efficacy of Ficus benghalensis L. plant leaf extracts against Culex quinquefasciatus Say, Aedes aegypti L. and Anopheles stephensi L. (Diptera: Culicidae). Govindarajan M Eur Rev Med Pharmacol Sci; 2010 Feb; 14(2):107-11. PubMed ID: 20329569 [TBL] [Abstract][Full Text] [Related]
4. Mosquito larval consumption of toxic arborescent leaf-litter, and its biocontrol potential. David JP; Tilquin M; Rey D; Ravanel P; Meyran JC Med Vet Entomol; 2003 Jun; 17(2):151-7. PubMed ID: 12823832 [TBL] [Abstract][Full Text] [Related]
5. Efficacy of essential oil from Cananga odorata (Lamk.) Hook.f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say). Soonwera M Parasitol Res; 2015 Dec; 114(12):4531-43. PubMed ID: 26337270 [TBL] [Abstract][Full Text] [Related]
6. Comparison of development of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus in mosquito larvae. Pantuwatana S; Sattabongkot J J Invertebr Pathol; 1990 Mar; 55(2):189-201. PubMed ID: 1969455 [TBL] [Abstract][Full Text] [Related]
7. Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. Moll RM; Romoser WS; Modrzakowski MC; Moncayo AC; Lerdthusnee K J Med Entomol; 2001 Jan; 38(1):29-32. PubMed ID: 11268687 [TBL] [Abstract][Full Text] [Related]
8. Characterization and biological activity of a Brazilian isolate of Bacillus sphaericus (Neide) highly toxic to mosquito larvae. Vilarinhos Pde T; Maruniak JE; Hall DW Mem Inst Oswaldo Cruz; 1996; 91(6):771-6. PubMed ID: 9283664 [TBL] [Abstract][Full Text] [Related]
9. Proteolysis in the gut of mosquito larvae results in further activation of the Bacillus sphaericus toxin. Broadwell AH; Baumann P Appl Environ Microbiol; 1987 Jun; 53(6):1333-7. PubMed ID: 2886104 [TBL] [Abstract][Full Text] [Related]
10. In vivo binding of the Cry11Bb toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae (Diptera: Culicidae). Ruiz LM; Segura C; Trujillo J; Orduz S Mem Inst Oswaldo Cruz; 2004 Feb; 99(1):73-9. PubMed ID: 15057351 [TBL] [Abstract][Full Text] [Related]
11. Synergy between toxins of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus. Wirth MC; Jiannino JA; Federici BA; Walton WE J Med Entomol; 2004 Sep; 41(5):935-41. PubMed ID: 15535624 [TBL] [Abstract][Full Text] [Related]
12. Larvicidal and Pupicidal Activities of Alizarin Isolated from Roots of Rubia cordifolia Against Culex quinquefasciatus Say and Aedes aegypti (L.) (Diptera: Culicidae). Gandhi MR; Reegan AD; Ganesan P; Sivasankaran K; Paulraj MG; Balakrishna K; Ignacimuthu S; Al-Dhabi NA Neotrop Entomol; 2016 Aug; 45(4):441-8. PubMed ID: 27004695 [TBL] [Abstract][Full Text] [Related]
13. Laboratory and simulated field evaluation of a new recombinant of Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus against Culex mosquito larvae (Diptera: Culicidae). Zahiri NS; Federici BA; Mulla MS J Med Entomol; 2004 May; 41(3):423-9. PubMed ID: 15185945 [TBL] [Abstract][Full Text] [Related]
14. Ultrastructural midgut events in Culicidae larvae fed with Bacillus sphaericus 2297 spore/crystal complex. Charles JF Ann Inst Pasteur Microbiol; 1987; 138(4):471-84. PubMed ID: 3663390 [TBL] [Abstract][Full Text] [Related]
15. Factors influencing ingestion of particulate materials by mosquito larvae (Diptera: Culicidae). Rashed SS; Mulla MS J Med Entomol; 1989 May; 26(3):210-6. PubMed ID: 2724318 [TBL] [Abstract][Full Text] [Related]
16. Serosal cuticle formation and distinct degrees of desiccation resistance in embryos of the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus. Vargas HC; Farnesi LC; Martins AJ; Valle D; Rezende GL J Insect Physiol; 2014 Mar; 62():54-60. PubMed ID: 24534672 [TBL] [Abstract][Full Text] [Related]
17. Lack of cross-resistance to Mtx1 from Bacillus sphaericus in B. sphaericus-resistant Culex quinquefasciatus (Diptera: Culicidae). Wei S; Cai Q; Cai Y; Yuan Z Pest Manag Sci; 2007 Feb; 63(2):190-3. PubMed ID: 17103380 [TBL] [Abstract][Full Text] [Related]
18. Larvicidal activity of catechin isolated from Leucas aspera against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Elumalai D; Hemavathi M; Hemalatha P; Deepaa CV; Kaleena PK Parasitol Res; 2016 Mar; 115(3):1203-12. PubMed ID: 26711450 [TBL] [Abstract][Full Text] [Related]
19. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico. Arredondo-Jiménez JI; Valdez-Delgado KM Med Vet Entomol; 2006 Dec; 20(4):377-87. PubMed ID: 17199749 [TBL] [Abstract][Full Text] [Related]
20. Effects of cyromazin and methoprene on the developmental stages of Anopheles dirus, Aedes aegypti and Culex quinquefasciatus (Diptera : Culicidae). Phonchevin T; Upatham ES; Phanthumachinda B; Prasittisuk C; Sukhapanth N Southeast Asian J Trop Med Public Health; 1985 Jun; 16(2):240-7. PubMed ID: 2866585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]