BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 19943111)

  • 1. Increased expression of the pro-apoptotic Bcl2 family member PUMA and apoptosis by the muscle regulatory transcription factor MyoD in response to a variety of stimuli.
    Harford TJ; Shaltouki A; Weyman CM
    Apoptosis; 2010 Jan; 15(1):71-82. PubMed ID: 19943111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The muscle regulatory transcription factor MyoD participates with p53 to directly increase the expression of the pro-apoptotic Bcl2 family member PUMA.
    Harford TJ; Kliment G; Shukla GC; Weyman CM
    Apoptosis; 2017 Dec; 22(12):1532-1542. PubMed ID: 28918507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estrogen receptor regulates MyoD gene expression by preventing AP-1-mediated repression.
    Pedraza-Alva G; Zingg JM; Donda A; Pérez-Martínez L
    Biochem Biophys Res Commun; 2009 Nov; 389(2):360-5. PubMed ID: 19723510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypermethylated myoblasts specifically deficient in MyoD autoactivation as a consequence of instability of MyoD.
    Horwitz M
    Exp Cell Res; 1996 Jul; 226(1):170-82. PubMed ID: 8660953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Ras-induced effects on skeletal myoblast differentiation and apoptosis are independent of constitutive PI3-kinase activity.
    Karasarides M; Dee K; Schulman D; Wolfman A; Weyman CM
    Cell Biol Int; 2006 Apr; 30(4):308-18. PubMed ID: 16503174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased expression of the pro-apoptotic Bcl2 family member PUMA is required for mitochondrial release of cytochrome C and the apoptosis associated with skeletal myoblast differentiation.
    Shaltouki A; Freer M; Mei Y; Weyman CM
    Apoptosis; 2007 Dec; 12(12):2143-54. PubMed ID: 17879164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MyoD induces apoptosis in the absence of RB function through a p21(WAF1)-dependent re-localization of cyclin/cdk complexes to the nucleus.
    Peschiaroli A; Figliola R; Coltella L; Strom A; Valentini A; D'Agnano I; Maione R
    Oncogene; 2002 Nov; 21(53):8114-27. PubMed ID: 12444547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo tetracycline-controlled myogenic conversion of NIH-3T3 cells: evidence of programmed cell death after muscle cell transplantation.
    Del Bo R; Torrente Y; Corti S; D'Angelo MG; Comi GP; Fagiolari G; Salani S; Cova A; Pisati F; Moggio M; Ausenda C; Scarlato G; Bresolin N
    Cell Transplant; 2001; 10(2):209-21. PubMed ID: 11332636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle-specific transcription factors in fibroblasts expressing the alpha-striated tropomyosin 3' untranslated region.
    L'ecuyer TJ; Schutte BC; Mendel KA; Morris E; Fulton AB
    Mol Genet Metab; 1999 Jul; 67(3):213-26. PubMed ID: 10381329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation of Thr115 in MyoD positively regulates function in murine fibroblasts and human rhabdomyosarcoma cells.
    Liu LN; Dias P; Houghton PJ
    Cell Growth Differ; 1998 Sep; 9(9):699-711. PubMed ID: 9751114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. c-Ski activates MyoD in the nucleus of myoblastic cells through suppression of histone deacetylases.
    Kobayashi N; Goto K; Horiguchi K; Nagata M; Kawata M; Miyazawa K; Saitoh M; Miyazono K
    Genes Cells; 2007 Mar; 12(3):375-85. PubMed ID: 17352741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S100B protein in myoblasts modulates myogenic differentiation via NF-kappaB-dependent inhibition of MyoD expression.
    Tubaro C; Arcuri C; Giambanco I; Donato R
    J Cell Physiol; 2010 Apr; 223(1):270-82. PubMed ID: 20069545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transduction of MyoD protein into myoblasts induces myogenic differentiation without addition of protein transduction domain.
    Noda T; Fujino T; Mie M; Kobatake E
    Biochem Biophys Res Commun; 2009 May; 382(2):473-7. PubMed ID: 19289111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pax7 and myogenic progression in skeletal muscle satellite cells.
    Zammit PS; Relaix F; Nagata Y; Ruiz AP; Collins CA; Partridge TA; Beauchamp JR
    J Cell Sci; 2006 May; 119(Pt 9):1824-32. PubMed ID: 16608873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved.
    Wang E
    Cancer Res; 1995 Jun; 55(11):2284-92. PubMed ID: 7757977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FHL3 binds MyoD and negatively regulates myotube formation.
    Cottle DL; McGrath MJ; Cowling BS; Coghill ID; Brown S; Mitchell CA
    J Cell Sci; 2007 Apr; 120(Pt 8):1423-35. PubMed ID: 17389685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The MyoD family of transcription factors and skeletal myogenesis.
    Rudnicki MA; Jaenisch R
    Bioessays; 1995 Mar; 17(3):203-9. PubMed ID: 7748174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-cell interaction modulates myoD-induced skeletal myogenesis of pluripotent P19 cells in vitro.
    Armour C; Garson K; McBurney MW
    Exp Cell Res; 1999 Aug; 251(1):79-91. PubMed ID: 10438573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RhoA effector mDiaphanous regulates MyoD expression and cell cycle progression via SRF-dependent and SRF-independent pathways.
    Gopinath SD; Narumiya S; Dhawan J
    J Cell Sci; 2007 Sep; 120(Pt 17):3086-98. PubMed ID: 17684061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor-specific adenovirus-mediated PUMA gene transfer using the survivin promoter enhances radiosensitivity of breast cancer cells in vitro and in vivo.
    Wang R; Wang X; Li B; Lin F; Dong K; Gao P; Zhang HZ
    Breast Cancer Res Treat; 2009 Sep; 117(1):45-54. PubMed ID: 18791823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.