These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19943255)

  • 21. Magnetic gold-nanorod/ PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy.
    Yang HW; Liu HL; Li ML; Hsi IW; Fan CT; Huang CY; Lu YJ; Hua MY; Chou HY; Liaw JW; Ma CC; Wei KC
    Biomaterials; 2013 Jul; 34(22):5651-60. PubMed ID: 23602366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled gold nanoparticle diffusion in nanotubes: Platfom of partial functionalization and gold capping.
    Son SJ; Lee SB
    J Am Chem Soc; 2006 Dec; 128(50):15974-5. PubMed ID: 17165716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of colloidal silver iron oxide nanoparticles--study of their optical and magnetic behavior.
    Kumar A; Singhal A
    Nanotechnology; 2009 Jul; 20(29):295606. PubMed ID: 19567956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic glyconanoparticles as a versatile platform for selective immunolabeling and imaging of cells.
    García I; Gallo J; Genicio N; Padro D; Penadés S
    Bioconjug Chem; 2011 Feb; 22(2):264-73. PubMed ID: 21247095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis.
    Iida H; Takayanagi K; Nakanishi T; Osaka T
    J Colloid Interface Sci; 2007 Oct; 314(1):274-80. PubMed ID: 17568605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of Fe3O4@phenol formaldehyde resin core-shell nanospheres loaded with Au nanoparticles as magnetic FRET nanoprobes for detection of thiols in living cells.
    Yang P; Xu QZ; Jin SY; Zhao Y; Lu Y; Xu XW; Yu SH
    Chemistry; 2012 Jan; 18(4):1154-60. PubMed ID: 22190410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria.
    Fan Z; Senapati D; Khan SA; Singh AK; Hamme A; Yust B; Sardar D; Ray PC
    Chemistry; 2013 Feb; 19(8):2839-47. PubMed ID: 23296491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles for cell separation.
    Cui YR; Hong C; Zhou YL; Li Y; Gao XM; Zhang XX
    Talanta; 2011 Sep; 85(3):1246-52. PubMed ID: 21807178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and properties of Au-Fe3O4 heterostructured nanoparticles.
    Sheng Y; Xue J
    J Colloid Interface Sci; 2012 May; 374(1):96-101. PubMed ID: 22365636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multifunctional nanostructures based on inorganic nanoparticles and oligothiophenes and their exploitation for cellular studies.
    Quarta A; Di Corato R; Manna L; Argentiere S; Cingolani R; Barbarella G; Pellegrino T
    J Am Chem Soc; 2008 Aug; 130(32):10545-55. PubMed ID: 18627147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating.
    Murph SE; Larsen GK; Lascola RJ
    J Vis Exp; 2016 Feb; (108):53598. PubMed ID: 26967491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional nanoparticle-based proteomic strategies for characterization of pathogenic bacteria.
    Chen WJ; Tsai PJ; Chen YC
    Anal Chem; 2008 Dec; 80(24):9612-21. PubMed ID: 19007241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy.
    Tian Q; Hu J; Zhu Y; Zou R; Chen Z; Yang S; Li R; Su Q; Han Y; Liu X
    J Am Chem Soc; 2013 Jun; 135(23):8571-7. PubMed ID: 23687972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water-dispersible, multifunctional, magnetic, luminescent silica-encapsulated composite nanotubes.
    Zhou H; Chen J; Sutter E; Feygenson M; Aronson MC; Wong SS
    Small; 2010 Feb; 6(3):412-20. PubMed ID: 20025080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gold hybrid nanoparticles for targeted phototherapy and cancer imaging.
    Kirui DK; Rey DA; Batt CA
    Nanotechnology; 2010 Mar; 21(10):105105. PubMed ID: 20154383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biocompatible heterostructured nanoparticles for multimodal biological detection.
    Choi JS; Jun YW; Yeon SI; Kim HC; Shin JS; Cheon J
    J Am Chem Soc; 2006 Dec; 128(50):15982-3. PubMed ID: 17165720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural, EPR, optical and magnetic properties of α-Fe₂O₃ nanoparticles.
    Jahagirdar AA; Dhananjaya N; Monika DL; Kesavulu CR; Nagabhushana H; Sharma SC; Nagabhushana BM; Shivakumara C; Rao JL; Chakradhar RP
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 104():512-8. PubMed ID: 23291114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.