BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19943276)

  • 1. New antimicrobial hexapeptides: synthesis, antimicrobial activities, cytotoxicity, and mechanistic studies.
    Sharma RK; Sundriyal S; Wangoo N; Tegge W; Jain R
    ChemMedChem; 2010 Jan; 5(1):86-95. PubMed ID: 19943276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of Trp-His and His-Arg analogues as new structural classes of short antimicrobial peptides.
    Sharma RK; Reddy RP; Tegge W; Jain R
    J Med Chem; 2009 Dec; 52(23):7421-31. PubMed ID: 19655779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide.
    Zhu WL; Lan H; Park Y; Yang ST; Kim JI; Park IS; You HJ; Lee JS; Park YS; Kim Y; Hahm KS; Shin SY
    Biochemistry; 2006 Oct; 45(43):13007-17. PubMed ID: 17059217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of alpha-aminoacid-N-carboxyanhydrides.
    Zhou C; Qi X; Li P; Chen WN; Mouad L; Chang MW; Leong SS; Chan-Park MB
    Biomacromolecules; 2010 Jan; 11(1):60-7. PubMed ID: 19957992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial activity of arginine- and tryptophan-rich hexapeptides: the effects of aromatic clusters, D-amino acid substitution and cyclization.
    Wessolowski A; Bienert M; Dathe M
    J Pept Res; 2004 Oct; 64(4):159-69. PubMed ID: 15357671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, biological evaluation and 2D-QSAR analysis of benzoxazoles as antimicrobial agents.
    Ertan T; Yildiz I; Tekiner-Gulbas B; Bolelli K; Temiz-Arpaci O; Ozkan S; Kaynak F; Yalcin I; Aki E
    Eur J Med Chem; 2009 Feb; 44(2):501-10. PubMed ID: 18524419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of pseudopeptides based L-tryptophan as a potential antimicrobial agent.
    Lv J; Yin L; Liu T; Wang Y
    Bioorg Med Chem Lett; 2007 Mar; 17(6):1601-7. PubMed ID: 17257839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A synthetic form of tracheal antimicrobial peptide has both bactericidal and antifungal activities.
    Lawyer C; Watabe M; Pai S; Bakir H; Eagleton L; Mashimo T; Watabe K
    Drug Des Discov; 1996 Dec; 14(3):171-8. PubMed ID: 9017361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and antimicrobial activity of some novel phenyl and benzimidazole substituted benzyl ethers.
    Güven OO; Erdoğan T; Göker H; Yildiz S
    Bioorg Med Chem Lett; 2007 Apr; 17(8):2233-6. PubMed ID: 17289382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and thermodynamic characterization of small cyclic antimicrobial arginine and tryptophan-rich peptides with selectivity for Gram-negative bacteria.
    Bagheri M
    Methods Mol Biol; 2010; 618():87-109. PubMed ID: 20094860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Azole antimicrobial pharmacophore-based tetrazoles: synthesis and biological evaluation as potential antimicrobial and anticonvulsant agents.
    Rostom SA; Ashour HM; El Razik HA; El Fattah Ael F; El-Din NN
    Bioorg Med Chem; 2009 Mar; 17(6):2410-22. PubMed ID: 19251421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues.
    Song YM; Park Y; Lim SS; Yang ST; Woo ER; Park IS; Lee JS; Kim JI; Hahm KS; Kim Y; Shin SY
    Biochemistry; 2005 Sep; 44(36):12094-106. PubMed ID: 16142907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and synthesis of novel antimicrobial peptides on the basis of alpha helical domain of Tenecin 1, an insect defensin protein, and structure-activity relationship study.
    Ahn HS; Cho W; Kang SH; Ko SS; Park MS; Cho H; Lee KH
    Peptides; 2006 Apr; 27(4):640-8. PubMed ID: 16226345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7.
    Conlon JM; Galadari S; Raza H; Condamine E
    Chem Biol Drug Des; 2008 Jul; 72(1):58-64. PubMed ID: 18554256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial and cytolytic properties of the frog skin peptide, kassinatuerin-1 and its L- and D-lysine-substituted derivatives.
    Conlon JM; Abraham B; Galadari S; Knoop FC; Sonnevend A; Pál T
    Peptides; 2005 Nov; 26(11):2104-10. PubMed ID: 15885852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo generation of short antimicrobial peptides with simple amino acid composition.
    Lee SH; Kim SJ; Lee YS; Song MD; Kim IH; Won HS
    Regul Pept; 2011 Jan; 166(1-3):36-41. PubMed ID: 20736034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides.
    Dathe M; Nikolenko H; Klose J; Bienert M
    Biochemistry; 2004 Jul; 43(28):9140-50. PubMed ID: 15248771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial activity of short arginine- and tryptophan-rich peptides.
    Strøm MB; Rekdal O; Svendsen JS
    J Pept Sci; 2002 Aug; 8(8):431-7. PubMed ID: 12212806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence requirements and an optimization strategy for short antimicrobial peptides.
    Hilpert K; Elliott MR; Volkmer-Engert R; Henklein P; Donini O; Zhou Q; Winkler DF; Hancock RE
    Chem Biol; 2006 Oct; 13(10):1101-7. PubMed ID: 17052614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.