BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 19943339)

  • 1. Synaptotagmins in neurodegeneration.
    Glavan G; Schliebs R; Zivin M
    Anat Rec (Hoboken); 2009 Dec; 292(12):1849-62. PubMed ID: 19943339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of striatal synaptotagmin mRNA isoforms in hemiparkinsonian rats.
    Glavan G; Zivin M
    Neuroscience; 2005; 135(2):545-54. PubMed ID: 16111820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermittent L-DOPA treatment differentially alters synaptotagmin 4 and 7 gene expression in the striatum of hemiparkinsonian rats.
    Glavan G
    Brain Res; 2008 Oct; 1236():216-24. PubMed ID: 18721798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new insight on Al-maltolate-treated aged rabbit as Alzheimer's animal model.
    Bharathi ; Shamasundar NM; Sathyanarayana Rao TS; Dhanunjaya Naidu M; Ravid R; Rao KS
    Brain Res Rev; 2006 Sep; 52(2):275-92. PubMed ID: 16782202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Studying pathogenesis of Alzheimer's disease in a Drosophila melanogaster model: human APP overexpression in the brain of transgenic flies leads to deficit of the synaptic protein synaptotagmin].
    Sarantseva SV; Bol'shakova OI; Timoshenko SI; Rodin DI; Vitek MP; Shvartsman AL
    Genetika; 2009 Jan; 45(1):119-26. PubMed ID: 19239106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential mRNA expression patterns of the synaptotagmin gene family in the rodent brain.
    Mittelsteadt T; Seifert G; Alvárez-Barón E; Steinhäuser C; Becker AJ; Schoch S
    J Comp Neurol; 2009 Feb; 512(4):514-28. PubMed ID: 19030179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postsynaptic mechanisms of excitotoxicity: Involvement of postsynaptic density proteins, radicals, and oxidant molecules.
    Forder JP; Tymianski M
    Neuroscience; 2009 Jan; 158(1):293-300. PubMed ID: 19041375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alzheimer's mechanisms in ischemic brain degeneration.
    Pluta R; Ułamek M; Jabłoński M
    Anat Rec (Hoboken); 2009 Dec; 292(12):1863-81. PubMed ID: 19943340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional profiling of a mouse model for Lafora disease reveals dysregulation of genes involved in the expression and modification of proteins.
    Ganesh S; Tsurutani N; Amano K; Mittal S; Uchikawa C; Delgado-Escueta AV; Yamakawa K
    Neurosci Lett; 2005 Oct; 387(2):62-7. PubMed ID: 16084644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of prostaglandin synthesis in excitotoxic brain diseases.
    Takemiya T; Matsumura K; Yamagata K
    Neurochem Int; 2007; 51(2-4):112-20. PubMed ID: 17629358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?
    Beal MF
    Ann Neurol; 1992 Feb; 31(2):119-30. PubMed ID: 1349466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins.
    Li C; Ullrich B; Zhang JZ; Anderson RG; Brose N; Südhof TC
    Nature; 1995 Jun; 375(6532):594-9. PubMed ID: 7791877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced susceptibility of S-100B transgenic mice to neuroinflammation and neuronal dysfunction induced by intracerebroventricular infusion of human beta-amyloid.
    Craft JM; Watterson DM; Marks A; Van Eldik LJ
    Glia; 2005 Aug; 51(3):209-16. PubMed ID: 15810011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration.
    Salehi A; Delcroix JD; Belichenko PV; Zhan K; Wu C; Valletta JS; Takimoto-Kimura R; Kleschevnikov AM; Sambamurti K; Chung PP; Xia W; Villar A; Campbell WA; Kulnane LS; Nixon RA; Lamb BT; Epstein CJ; Stokin GB; Goldstein LS; Mobley WC
    Neuron; 2006 Jul; 51(1):29-42. PubMed ID: 16815330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface trafficking of N-methyl-D-aspartate receptors: physiological and pathological perspectives.
    Groc L; Bard L; Choquet D
    Neuroscience; 2009 Jan; 158(1):4-18. PubMed ID: 18583064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NR1 and GluR2 expression mediates excitotoxicity in chronic hypobaric hypoxia.
    Hota SK; Barhwal K; Singh SB; Sairam M; Ilavazhagan G
    J Neurosci Res; 2008 Apr; 86(5):1142-52. PubMed ID: 17969105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallothionein-I and -III expression in animal models of Alzheimer disease.
    Carrasco J; Adlard P; Cotman C; Quintana A; Penkowa M; Xu F; Van Nostrand WE; Hidalgo J
    Neuroscience; 2006 Dec; 143(4):911-22. PubMed ID: 17027170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal accumulation of synaptic markers in APP transgenic Drosophila depends on the NPTY motif and is paralleled by defects in synaptic plasticity.
    Rusu P; Jansen A; Soba P; Kirsch J; Löwer A; Merdes G; Kuan YH; Jung A; Beyreuther K; Kjaerulff O; Kins S
    Eur J Neurosci; 2007 Feb; 25(4):1079-86. PubMed ID: 17331204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of cortical gene expression in mouse models of Alzheimer's disease.
    Wu ZL; Ciallella JR; Flood DG; O'Kane TM; Bozyczko-Coyne D; Savage MJ
    Neurobiol Aging; 2006 Mar; 27(3):377-86. PubMed ID: 15927307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of tandem C2 domains from the mammalian synaptotagmin family.
    Rickman C; Craxton M; Osborne S; Davletov B
    Biochem J; 2004 Mar; 378(Pt 2):681-6. PubMed ID: 14713287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.