BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 19943354)

  • 21. [Laser-induced fluorescence diagnosis of tumors exemplified by solid Ehrlich carcinoma].
    König K; Dietel W
    Arch Geschwulstforsch; 1990; 60(1):1-9. PubMed ID: 2138011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers.
    Panjehpour M; Julius CE; Phan MN; Vo-Dinh T; Overholt S
    Lasers Surg Med; 2002; 31(5):367-73. PubMed ID: 12430156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simple correction for cell autofluorescence for multiparameter cell-based analysis of human solid tumors.
    Smith CA; Pollice A; Emlet D; Shackney SE
    Cytometry B Clin Cytom; 2006 Mar; 70(2):91-103. PubMed ID: 16456868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autofluorescence correction for fluorescence in situ hybridization.
    Szöllösi J; Lockett SJ; Balázs M; Waldman FM
    Cytometry; 1995 Aug; 20(4):356-61. PubMed ID: 7587724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of squamous cell carcinomas and pre-cancerous lesions in the oral cavity by quantification of 5-aminolevulinic acid induced fluorescence endoscopic images.
    Zheng W; Soo KC; Sivanandan R; Olivo M
    Lasers Surg Med; 2002; 31(3):151-7. PubMed ID: 12224087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescent imaging in a glioma model in vivo.
    Nikas DC; Foley JW; Black PM
    Lasers Surg Med; 2001; 29(1):11-7. PubMed ID: 11500856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens.
    Cheng LL; Chang IW; Louis DN; Gonzalez RG
    Cancer Res; 1998 May; 58(9):1825-32. PubMed ID: 9581820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multivariate analysis of laryngeal fluorescence spectra recorded in vivo.
    Eker C; Rydell R; Svanberg K; Andersson-Engels S
    Lasers Surg Med; 2001; 28(3):259-66. PubMed ID: 11295762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy.
    Saraswathy A; Jayasree RS; Baiju KV; Gupta AK; Pillai VP
    Photomed Laser Surg; 2009 Jun; 27(3):425-33. PubMed ID: 19025404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions.
    Croce AC; De Simone U; Freitas I; Boncompagni E; Neri D; Cillo U; Bottiroli G
    Lasers Surg Med; 2010 Jul; 42(5):371-8. PubMed ID: 20583250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autofluorescence spectroscopic differentiation between normal and cancerous colorectal tissues by means of a two-peak ratio algorithm.
    Wang CY; Lin JK; Chen BF; Chiang HK
    J Formos Med Assoc; 1999 Dec; 98(12):837-43. PubMed ID: 10634024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins.
    Croce AC; Fiorani S; Locatelli D; Nano R; Ceroni M; Tancioni F; Giombelli E; Benericetti E; Bottiroli G
    Photochem Photobiol; 2003 Mar; 77(3):309-18. PubMed ID: 12685660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autofluorescence and Photofrin-induced fluorescence imaging and spectroscopy in an animal model of oral cancer.
    Mang T; Kost J; Sullivan M; Wilson BC
    Photodiagnosis Photodyn Ther; 2006 Sep; 3(3):168-76. PubMed ID: 25049151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Autofluorescence imaging, an excellent tool for comparative morphology.
    Haug JT; Haug C; Kutschera V; Mayer G; Maas A; Liebau S; Castellani C; Wolfram U; Clarkson EN; Waloszek D
    J Microsc; 2011 Dec; 244(3):259-72. PubMed ID: 21883208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue motion and strain in the human brain assessed by intraoperative ultrasound in glioma patients.
    Selbekk T; Brekken R; Solheim O; Lydersen S; Hernes TA; Unsgaard G
    Ultrasound Med Biol; 2010 Jan; 36(1):2-10. PubMed ID: 19854562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel method for reliable nuclear antibody detection in tissue with high levels of pathology-induced autofluorescence.
    Spanswick SC; Bray D; Zelinski EL; Sutherland RJ
    J Neurosci Methods; 2009 Dec; 185(1):45-9. PubMed ID: 19747946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultraviolet laser-induced fluorescence of human stomach tissues: detection of cancer tissues by imaging techniques.
    Chwirot BW; Chwirot S; Jedrzejczyk W; Jackowski M; Raczyńska AM; Winczakiewicz J; Dobber J
    Lasers Surg Med; 1997; 21(2):149-58. PubMed ID: 9261792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo brain tumor demarcation using optical spectroscopy.
    Lin WC; Toms SA; Johnson M; Jansen ED; Mahadevan-Jansen A
    Photochem Photobiol; 2001 Apr; 73(4):396-402. PubMed ID: 11332035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo laser-induced fluorescence imaging of a rat pancreatic cancer with pheophorbide-a.
    Tassetti V; Hajri A; Sowinska M; Evrard S; Heisel F; Cheng LQ; Miehé JA; Marescaux J; Aprahamian M
    Photochem Photobiol; 1997 Jun; 65(6):997-1006. PubMed ID: 9188279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence spectroscopy as a highly potential single-entity tool to identify chromophores and fluorophores: study on neoplastic human brain lesions.
    Nazeer SS; Saraswathy A; Gupta AK; Jayasree RS
    J Biomed Opt; 2013 Jun; 18(6):067002. PubMed ID: 23733026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.