BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 19943354)

  • 41. Brain tissue autofluorescence: an aid for intraoperative delineation of tumor resection margins.
    Bottiroli G; Croce AC; Locatelli D; Nano R; Giombelli E; Messina A; Benericetti E
    Cancer Detect Prev; 1998; 22(4):330-9. PubMed ID: 9674876
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photodynamic imaging of a rat pancreatic cancer with pheophorbide a.
    Keller P; Sowinska M; Tassetti V; Heisel F; Hajri A; Evrard S; Miehe JA; Marescaux J; Aprahamian M
    Photochem Photobiol; 1996 Jun; 63(6):860-7. PubMed ID: 8992507
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spectroscopic analysis of the autofluorescence from human bronchus using an ultraviolet laser diode.
    Kobayashi M; Shibuya K; Hoshino H; Fujisawa T
    J Biomed Opt; 2002 Oct; 7(4):603-8. PubMed ID: 12421127
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Imaging of laser-excited tissue autofluorescence bleaching rates.
    Spigulis J; Lihachev A; Erts R
    Appl Opt; 2009 Apr; 48(10):D163-8. PubMed ID: 19340105
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characteristic autofluorescence for cancer diagnosis and its origin.
    Yang YL; Ye YM; Li FM; Li YF; Ma PZ
    Lasers Surg Med; 1987; 7(6):528-32. PubMed ID: 3431331
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distance and angular dependence of intensity ratios in laser-induced autofluorescence techniques.
    Kwek LC; Fu S; Chia TC; Tang CL
    Med Phys; 2004 May; 31(5):1072-5. PubMed ID: 15191294
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wide-field spectral imaging of human ovary autofluorescence and oncologic diagnosis via previously collected probe data.
    Renkoski TE; Hatch KD; Utzinger U
    J Biomed Opt; 2012 Mar; 17(3):036003. PubMed ID: 22502561
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electronic endoscopy, blood flow measurement and autofluorescence tissue spectroscopy.
    Chak A; Sivak MV
    Endoscopy; 1994 Jan; 26(1):169-74. PubMed ID: 8205989
    [No Abstract]   [Full Text] [Related]  

  • 49. Autofluorescence removal using a customized filter set.
    Pang Z; Barash E; Santamaria-Pang A; Sevinsky C; Li Q; Ginty F
    Microsc Res Tech; 2013 Oct; 76(10):1007-15. PubMed ID: 23857594
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Fluorescence diagnostics of tumors].
    Rotomskis R; Streckyte G
    Medicina (Kaunas); 2004; 40(12):1219-30. PubMed ID: 15630350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intraoperative microscopic autofluorescence detection and characterization in brain tumors using stimulated Raman histology and two-photon fluorescence.
    Fürtjes G; Reinecke D; von Spreckelsen N; Meißner AK; Rueß D; Timmer M; Freudiger C; Ion-Margineanu A; Khalid F; Watrinet K; Mawrin C; Chmyrov A; Goldbrunner R; Bruns O; Neuschmelting V
    Front Oncol; 2023; 13():1146031. PubMed ID: 37234975
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A blinded study using laser induced endogenous fluorescence spectroscopy to differentiate ex vivo spine tumor, healthy muscle, and healthy bone.
    Sperber J; Zachem TJ; Prakash R; Owolo E; Yamamoto K; Nguyen AD; Hockenberry H; Ross WA; Herndon JE; Codd PJ; Goodwin CR
    Sci Rep; 2024 Jan; 14(1):1921. PubMed ID: 38253556
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MS-2 fibrosarcoma characterization by laser induced autofluorescence.
    Colasanti A; Kisslinger A; Fabbrocini G; Liuzzi R; Quarto M; Riccio P; Roberti G; Villani F
    Lasers Surg Med; 2000; 26(5):441-8. PubMed ID: 10861699
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Natural fluorescence of white blood cells: spectroscopic and imaging study.
    Monici M; Pratesi R; Bernabei PA; Caporale R; Ferrini PR; Croce AC; Balzarini P; Bottiroli G
    J Photochem Photobiol B; 1995 Sep; 30(1):29-37. PubMed ID: 8558361
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo autofluorescence in the biological windows: the role of pigmentation.
    Del Rosal B; Villa I; Jaque D; Sanz-Rodríguez F
    J Biophotonics; 2016 Oct; 9(10):1059-1067. PubMed ID: 26576035
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Autofluorescence imaging.
    ; Song LM; Banerjee S; Desilets D; Diehl DL; Farraye FA; Kaul V; Kethu SR; Kwon RS; Mamula P; Pedrosa MC; Rodriguez SA; Tierney WM
    Gastrointest Endosc; 2011 Apr; 73(4):647-50. PubMed ID: 21296349
    [No Abstract]   [Full Text] [Related]  

  • 57. An automatic objective estimation of vascularization of normal and tumor-invaded brain tissue using image analysis.
    Rucklidge GJ; Travis AJ
    Anal Quant Cytol Histol; 1989 Aug; 11(4):286-90. PubMed ID: 2669784
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical processing of light-induced autofluorescence for characterization of tissue pathology.
    Qu J; Chang H; Xiong S
    Opt Lett; 2001 Aug; 26(16):1268-70. PubMed ID: 18049582
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An update on the penetration depth of 630 nm light in normal and malignant human brain tissue in vivo.
    Muller PJ; Wilson BC
    Phys Med Biol; 1986 Nov; 31(11):1295-7. PubMed ID: 3786415
    [No Abstract]   [Full Text] [Related]  

  • 60. Depolarization of autofluorescence from malignant and normal human breast tissues.
    Mohanty SK; Ghosh N; Majumder SK; Gupta PK
    Appl Opt; 2001 Mar; 40(7):1147-54. PubMed ID: 18357100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.