These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19943737)

  • 1. The critical role of hemodynamics in the development of cerebral vascular disease.
    Nixon AM; Gunel M; Sumpio BE
    J Neurosurg; 2010 Jun; 112(6):1240-53. PubMed ID: 19943737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of aneurysmogenic high positive wall shear stress gradient by wide angle at cerebral bifurcations, independent of flow rate.
    Lauric A; Hippelheuser JE; Malek AM
    J Neurosurg; 2018 Aug; 131(2):442-452. PubMed ID: 30095336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra-aneurysmal hemodynamics in a large middle cerebral artery aneurysm with wall atherosclerosis.
    Tateshima S; Tanishita K; Omura H; Sayre J; Villablanca JP; Martin N; Vinuela F
    Surg Neurol; 2008 Nov; 70(5):454-62; discussion 462. PubMed ID: 18514767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo cerebral aneurysm formation associated with proximal stenosis.
    Kono K; Masuo O; Nakao N; Meng H
    Neurosurgery; 2013 Dec; 73(6):E1080-90. PubMed ID: 23839522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracranial aneurysms occur more frequently at bifurcation sites that typically experience higher hemodynamic stresses.
    Alfano JM; Kolega J; Natarajan SK; Xiang J; Paluch RA; Levy EI; Siddiqui AH; Meng H
    Neurosurgery; 2013 Sep; 73(3):497-505. PubMed ID: 23756745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hemodynamic importance of the geometry of bifurcations in the circle of Willis (glass model studies).
    Roach MR; Scott S; Ferguson GG
    Stroke; 1972; 3(3):255-67. PubMed ID: 5034974
    [No Abstract]   [Full Text] [Related]  

  • 7. Fluid-structure interaction of patient-specific Circle of Willis with aneurysm: Investigation of hemodynamic parameters.
    Jahed M; Ghalichi F; Farhoudi M
    Biomed Mater Eng; 2018; 29(3):357-368. PubMed ID: 29578465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracranial collateralization determines hemodynamic forces for carotid plaque disruption.
    Lal BK; Beach KW; Sumner DS
    J Vasc Surg; 2011 Nov; 54(5):1461-71. PubMed ID: 21820834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carotid geometry effects on blood flow and on risk for vascular disease.
    Nguyen KT; Clark CD; Chancellor TJ; Papavassiliou DV
    J Biomech; 2008; 41(1):11-9. PubMed ID: 17919645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of aneurysm-associated wall shear stress related to morphological variations of circle of Willis using a microfluidic device.
    Nam SW; Choi S; Cheong Y; Kim YH; Park HK
    J Biomech; 2015 Jan; 48(2):348-53. PubMed ID: 25497378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of the hemodynamics of A1 dysplasia or hypoplasia to anterior communicating artery aneurysms: a 3-dimensional numerical simulation study.
    Xu L; Zhang F; Wang H; Yu Y
    J Comput Assist Tomogr; 2012; 36(4):421-6. PubMed ID: 22805671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation.
    Younis HF; Kaazempur-Mofrad MR; Chan RC; Isasi AG; Hinton DP; Chau AH; Kim LA; Kamm RD
    Biomech Model Mechanobiol; 2004 Sep; 3(1):17-32. PubMed ID: 15300454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo visualization and analysis of 3-D hemodynamics in cerebral aneurysms with flow-sensitized 4-D MR imaging at 3 T.
    Meckel S; Stalder AF; Santini F; Radü EW; Rüfenacht DA; Markl M; Wetzel SG
    Neuroradiology; 2008 Jun; 50(6):473-84. PubMed ID: 18350286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study.
    Hoi Y; Meng H; Woodward SH; Bendok BR; Hanel RA; Guterman LR; Hopkins LN
    J Neurosurg; 2004 Oct; 101(4):676-81. PubMed ID: 15481725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wall shear stress distribution inside growing cerebral aneurysm.
    Tanoue T; Tateshima S; Villablanca JP; Viñuela F; Tanishita K
    AJNR Am J Neuroradiol; 2011 Oct; 32(9):1732-7. PubMed ID: 21984256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation.
    Spiegel M; Redel T; Zhang YJ; Struffert T; Hornegger J; Grossman RG; Doerfler A; Karmonik C
    Comput Methods Biomech Biomed Engin; 2011; 14(1):9-22. PubMed ID: 21161794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of aneurysm and ICA morphology on hemodynamics before and after flow diverter treatment.
    Larrabide I; Geers AJ; Morales HG; Aguilar ML; Rüfenacht DA
    J Neurointerv Surg; 2015 Apr; 7(4):272-80. PubMed ID: 24692666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of hemodynamics in the circle of Willis.
    Alnaes MS; Isaksen J; Mardal KA; Romner B; Morgan MK; Ingebrigtsen T
    Stroke; 2007 Sep; 38(9):2500-5. PubMed ID: 17673714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducibility of image-based analysis of cerebral aneurysm geometry and hemodynamics: an in-vitro study of magnetic resonance imaging, computed tomography, and three-dimensional rotational angiography.
    Goubergrits L; Schaller J; Kertzscher U; Petz Ch; Hege HC; Spuler A
    J Neurol Surg A Cent Eur Neurosurg; 2013 Sep; 74(5):294-302. PubMed ID: 23700168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms.
    Watton PN; Selimovic A; Raberger NB; Huang P; Holzapfel GA; Ventikos Y
    Biomech Model Mechanobiol; 2011 Feb; 10(1):109-32. PubMed ID: 20496095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.