BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19944085)

  • 1. Structure-toxicity relationship of phenolic analogs as anti-melanoma agents: an enzyme directed prodrug approach.
    Vad NM; Kandala PK; Srivastava SK; Moridani MY
    Chem Biol Interact; 2010 Feb; 183(3):462-71. PubMed ID: 19944085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical mechanism of acetylsalicylic acid (Aspirin) selective toxicity toward melanoma cell lines.
    Vad NM; Yount G; Moridani MY
    Melanoma Res; 2008 Dec; 18(6):386-99. PubMed ID: 18971789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of acetaminophen in skin B16-F0 melanoma tumor-bearing C57BL/6 mice.
    Vad NM; Kudugunti SK; Graber D; Bailey N; Srivenugopal K; Moridani MY
    Int J Oncol; 2009 Jul; 35(1):193-204. PubMed ID: 19513568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical mechanism of acetaminophen (APAP) induced toxicity in melanoma cell lines.
    Vad NM; Yount G; Moore D; Weidanz J; Moridani MY
    J Pharm Sci; 2009 Apr; 98(4):1409-25. PubMed ID: 18759348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical mechanism of caffeic acid phenylethyl ester (CAPE) selective toxicity towards melanoma cell lines.
    Kudugunti SK; Vad NM; Whiteside AJ; Naik BU; Yusuf MA; Srivenugopal KS; Moridani MY
    Chem Biol Interact; 2010 Oct; 188(1):1-14. PubMed ID: 20685355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic bioactivation and toxicity of ethyl 4-hydroxybenzoate in human SK-MEL-28 melanoma cells.
    Vad NM; Shaik IH; Mehvar R; Moridani MY
    J Pharm Sci; 2008 May; 97(5):1934-45. PubMed ID: 17847068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural toxicity relationship of 4-alkoxyphenols' cytotoxicity towards murine B16-F0 melanoma cell line.
    Moridani MY; Moore M; Bartsch RA; Yang Y; Heibati-Sadati S
    J Pharm Pharm Sci; 2005 Aug; 8(2):348-60. PubMed ID: 16124947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of caffeic acid phenethyl ester (CAPE) in skin B16-F0 melanoma tumor bearing C57BL/6 mice.
    Kudugunti SK; Vad NM; Ekogbo E; Moridani MY
    Invest New Drugs; 2011 Feb; 29(1):52-62. PubMed ID: 19844662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of in vitro cytotoxicity of N-acetyl and N-propionyl derivatives of phenolic thioether amines in melanoma and neuroblastoma cells and the relationship to tyrosinase and tyrosine hydroxylase enzyme activity.
    Gili A; Thomas PD; Ota M; Jimbow K
    Melanoma Res; 2000 Feb; 10(1):9-15. PubMed ID: 10711635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between 4-hydroxyanisole toxicity and dopa oxidase activity for three melanoma cell lines.
    Rodriguez-Vicente J; Vicente-Ortega V; Canteras-Jordana M; Calderon-Rubiales F
    Melanoma Res; 1997 Oct; 7(5):373-81. PubMed ID: 9429220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosinase overexpression promotes ATM-dependent p53 phosphorylation by quercetin and sensitizes melanoma cells to dacarbazine.
    Thangasamy T; Sittadjody S; Limesand KH; Burd R
    Cell Oncol; 2008; 30(5):371-87. PubMed ID: 18791269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical basis of 4-hydroxyanisole induced cell toxicity towards B16-F0 melanoma cells.
    Moridani MY
    Cancer Lett; 2006 Nov; 243(2):235-45. PubMed ID: 16427188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metabolic bioactivation of caffeic acid phenethyl ester (CAPE) mediated by tyrosinase selectively inhibits glutathione S-transferase.
    Kudugunti SK; Thorsheim H; Yousef MS; Guan L; Moridani MY
    Chem Biol Interact; 2011 Jul; 192(3):243-56. PubMed ID: 21458432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of carbidopa by tyrosinase and its effect on murine melanoma.
    Gasowska-Bajger B; Frackowiak-Wojtasek B; Koj S; Cichoń T; Smolarczyk R; Szala S; Wojtasek H
    Bioorg Med Chem Lett; 2009 Jul; 19(13):3507-10. PubMed ID: 19457668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of gene expression and protein synthesis of tyrosinase, TRP-1, lamp-1, and CD63 in UVB-induced melanogenesis in human melanomas.
    Hara H; Lee MH; Chen H; Luo D; Jimbow K
    J Invest Dermatol; 1994 Apr; 102(4):495-500. PubMed ID: 8151127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective induction of apoptosis in melanoma cells by tyrosinase promoter-controlled CD95 ligand overexpression.
    Fecker LF; Geilen CC; Hossini AM; Schwarz C; Fechner H; Bartlett DL; Orfanos CE; Eberle J
    J Invest Dermatol; 2005 Jan; 124(1):221-8. PubMed ID: 15654977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melatonin Induces Melanogenesis in Human SK-MEL-1 Melanoma Cells Involving Glycogen Synthase Kinase-3 and Reactive Oxygen Species.
    Perdomo J; Quintana C; González I; Hernández I; Rubio S; Loro JF; Reiter RJ; Estévez F; Quintana J
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32674468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism(s) regulating inhibition of thymidylate synthase and growth by gamma-L-glutaminyl-4-hydroxy-3-iodobenzene, a novel melanin precursor, in melanogenic melanoma cells.
    Prezioso JA; Damodaran KM; Wang N; Bloomer WD
    Biochem Pharmacol; 1993 Jan; 45(2):473-81. PubMed ID: 8435097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melanogenesis-targeted anti-melanoma pro-drug development: effect of side-chain variations on the cytotoxicity of tyrosinase-generated ortho-quinones in a model screening system.
    Riley PA; Cooksey CJ; Johnson CI; Land EJ; Latter AM; Ramsden CA
    Eur J Cancer; 1997 Jan; 33(1):135-43. PubMed ID: 9071913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosinase expression and melanogenesis in melanotic and amelanotic B16 mouse melanoma cells.
    Burchill SA; Bennett DC; Holmes A; Thody AJ
    Pathobiology; 1991; 59(5):335-9. PubMed ID: 1910528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.