BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19944156)

  • 1. A biophysical model for modulation frequency encoding in the cochlear nucleus.
    Eguia MC; Garcia GC; Romano SA
    J Physiol Paris; 2010; 104(3-4):118-27. PubMed ID: 19944156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simulation of chopper neurons in the cochlear nucleus with wideband input from onset neurons.
    Bahmer A; Langner G
    Biol Cybern; 2009 Jan; 100(1):21-33. PubMed ID: 19015873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal and frequency characteristics of cartwheel cells in the dorsal cochlear nucleus of the awake mouse.
    Portfors CV; Roberts PD
    J Neurophysiol; 2007 Aug; 98(2):744-56. PubMed ID: 17581852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillating neurons in the cochlear nucleus: I. Experimental basis of a simulation paradigm.
    Bahmer A; Langner G
    Biol Cybern; 2006 Oct; 95(4):371-9. PubMed ID: 16847666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillating neurons in the cochlear nucleus: II. Simulation results.
    Bahmer A; Langner G
    Biol Cybern; 2006 Oct; 95(4):381-92. PubMed ID: 16847667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil.
    Pasic TR; Moore DR; Rubel EW
    J Comp Neurol; 1994 Oct; 348(1):111-20. PubMed ID: 7814680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoding of amplitude modulation in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 May; 71(5):1797-825. PubMed ID: 8064349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The medial nucleus of the trapezoid body in rat: spectral and temporal properties vary with anatomical location of the units.
    Tolnai S; Hernandez O; Englitz B; Rübsamen R; Malmierca MS
    Eur J Neurosci; 2008 May; 27(10):2587-98. PubMed ID: 18547245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of centrifugal pathways on responses of cochlear nucleus neurons to signals in noise.
    Mulders WH; Seluakumaran K; Robertson D
    Eur J Neurosci; 2008 Feb; 27(3):702-14. PubMed ID: 18279322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.
    Koka K; Tollin DJ
    Front Neural Circuits; 2014; 8():144. PubMed ID: 25565971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biologically motivated neural network for phase extraction from complex sounds.
    Borst M; Langner G; Palm G
    Biol Cybern; 2004 Feb; 90(2):98-104. PubMed ID: 14999476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early appearance of inhibitory input to the MNTB supports binaural processing during development.
    Green JS; Sanes DH
    J Neurophysiol; 2005 Dec; 94(6):3826-35. PubMed ID: 16120660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional tonotopic organization of the C57 mouse cochlear nucleus.
    Luo F; Wang Q; Farid N; Liu X; Yan J
    Hear Res; 2009 Nov; 257(1-2):75-82. PubMed ID: 19695320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct comparison between properties of adaptation of the auditory nerve and the ventral cochlear nucleus in response to repetitive clicks.
    Meyer K; Rouiller EM; Loquet G
    Hear Res; 2007 Jun; 228(1-2):144-55. PubMed ID: 17391881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels.
    Kaczmarek LK; Bhattacharjee A; Desai R; Gan L; Song P; von Hehn CA; Whim MD; Yang B
    Hear Res; 2005 Aug; 206(1-2):133-45. PubMed ID: 16081004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogeny of tonotopic organization of brain stem auditory nuclei in the chicken: implications for development of the place principle.
    Lippe W; Rubel EW
    J Comp Neurol; 1985 Jul; 237(2):273-89. PubMed ID: 4031125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accessing ampli-tonotopic organization of rat auditory cortex by microstimulation of cochlear nucleus.
    Takahashi H; Nakao M; Kaga K
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1333-44. PubMed ID: 16041997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Monaural phasic sensitivity of auditory system neurons in the cat].
    Radionova EA
    Zh Evol Biokhim Fiziol; 1985; 21(5):478-86. PubMed ID: 4060941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contralateral inhibitory and excitatory frequency response maps in the mammalian cochlear nucleus.
    Ingham NJ; Bleeck S; Winter IM
    Eur J Neurosci; 2006 Nov; 24(9):2515-29. PubMed ID: 17100840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.